
 
 
 

 
 
 
 
 
 

PolishAPI 
 

Specification of an interface for the needs of 
services provided by third parties on the basis of 

access to payment accounts 
 
 
 

Document developed by the PolishAPI Project Group 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

12 December 2019 
Version 3.0 

  



PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 2 / 100 

Licence 

The PolishAPI standard documentation is available based on the Creative Commons Attribution 3.0 
Poland licence, https://creativecommons.org/licenses/by/3.0/pl/. 

Version history 

Version Publication date Change Notes 

3.0 12.12.2019 major supported 

2.1.3 12.07.2019 patch supported 

2.1.2 19.02.2019 patch supported 

2.1.1 06.12.2018 patch supported 

2.1 18.09.2018 minor supported 

2.0 09.07.2018 major non supported  

1.0 17.04.2018  non supported 

 

Editorial team 

Maciej Kostro, Polish Bank Association 
Łukasz Jackowicz, Quercus 

Project support 

Marcin Jankowski, Michał Podgajny, KPMG 

Legal support 

Marta Stanisławska, Sławomir Szepietowski, Bird&Bird 

Contact 

info@polishapi.org  

https://polishapi.org  

 
  

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/
mailto:info@polishapi.org
https://polishapi.org/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 3 / 100 

Table of Contents 

1 Glossary of Terms used in the Document ......................................................... 8 

2 Introduction ..................................................................................................... 10 

2.1 Context .................................................................................................................. 10 

2.2 Document Structure .............................................................................................. 11 

2.3 Mission of the PolishAPI Standard ........................................................................ 11 

2.4 Main Assumptions ................................................................................................. 12 

2.4.1 Actors in the PolishAPI Standard-defined Processes ................................................... 12 

2.4.2 Requirements concerning Actors in the PolishAPI Standard-defined Processes ........ 13 

2.4.3 PSU Authentication Mechanisms ................................................................................ 14 

2.4.4 Management of PSU’s Consents for the Performance of Services by a TPP ............... 16 

2.4.5 Application of the Strong Customer Authentication (SCA) Mechanism ...................... 17 

2.4.6 Provision of Services within the Compliance Scope .................................................... 17 

2.4.7 Provision of Services within the Premium Scope ........................................................ 17 

2.5 Development of the PolishAPI Standard ............................................................... 17 

3 Business Definition of the Compliance Scope Services ................................... 18 

3.1 Business Definition of the Compliance Scope for the PIS Service......................... 18 

3.1.1 Types of Transactions within the Compliance Scope .................................................. 18 

3.1.2 Transaction cancellation .............................................................................................. 19 

3.1.3 Information about the Transaction Status .................................................................. 19 

3.1.4 Definition of a Payment Account ................................................................................. 20 

3.1.5 List of Fields Required by the ASPSP in the Compliance Scope ................................... 20 

3.1.6 Diagrams of requests under the PIS Service within the Compliance Scope ................ 24 

3.1.7 Authorisation of a payment transaction initiated by means of a PIS service .............. 25 

3.2 Business Definition of the Compliance Scope for the AIS Service ........................ 25 

3.2.1 Definition of a Payment Account ................................................................................. 25 

3.2.2 Frequency of Requests within the Compliance Scope ................................................ 25 

3.2.3 Scope of Information concerning the Payment Account History within the Compliance 
Scope 26 

3.2.4 List of Fields Required by the ASPSP in the Compliance Scope ................................... 26 

3.2.5 Diagrams of Requests under the AIS Service within the Compliance Scope ............... 33 

3.3 Business Definition of the Compliance Scope for the CAF Service ....................... 33 

3.3.1 List of Fields Required by the ASPSP in the Compliance Scope ................................... 33 

3.3.2 Diagrams of Requests under the CAF Service within the Compliance Scope .............. 33 

4 Sample Use Cases ............................................................................................ 34 

4.1 Use Case #1: payment initiation by the PISP (PIS) ................................................ 34 

4.1.1 Consent granting and payment initiation performance (single payment with a current 
or future date, recurring payments, multiple payments – transfer batch) – ASPSP-side 
authentication ............................................................................................................................... 34 

4.1.2 Consent granting and payment initiation performance (single payment with a current 
or future date, recurring payments, multiple payments – transfer batch) – Authentication in an 
external authorization tool ........................................................................................................... 35 

4.1.3 Payment status request (single payment with a current or future date, recurring 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 4 / 100 

payment, multiple payment – transfer batch) .............................................................................. 36 

4.1.4 Payment cancellation (single payment with a future date, recurring payment with a 
future date, single payment as part of a multiple payment (with a future date) or a multiple 
payment – a batch of transfers) – ASPSP-side authentication ..................................................... 37 

4.1.5 Payment cancellation (single payment with a future date, recurring payment with a 
future date, single payment as part of a multiple payment (with a future date) or a multiple 
payment – a batch of transfers) – authentication in an external authorization tool ................... 38 

4.2 Use Case #2: payment account information display by the AISP (AIS) ................. 39 

4.2.1 Consent granting and account information taking with a manual insertion of the 
account number (ASPSP-side authentication) .............................................................................. 39 

4.2.2 Consent granting and account information taking with a manual insertion of the 
account number– authentication in an external authorization tool ............................................ 40 

4.2.3 Consent granting and account information taking with ASPSP-side account selection – 
ASPSP-side authentication ............................................................................................................ 41 

4.2.4 Consent granting and account information taking with an account list retrieval – 
ASPSP-side authentication ............................................................................................................ 42 

4.2.5 Consent granting and account information taking with an account list retrieval – 
authentication in an external authorization tool .......................................................................... 43 

4.2.6 Account information retrieval without PSU’s participation ........................................ 44 

4.2.7 Withdrawal of consent ................................................................................................ 45 

4.3 Use Case #3: request for confirmation of funds by a PIISP (CAF) ......................... 45 

5 Polish API Technical Specification.................................................................... 47 

5.1 Technical Assumptions .......................................................................................... 47 

5.2 XS2A Session Establishment .................................................................................. 48 

5.3 Definition of Access Token .................................................................................... 49 

5.4 Mutual Authentication of the TPP and the ASPSP ................................................ 49 

5.5 Communication Protocol....................................................................................... 50 

5.6 Resource Name Diagram ....................................................................................... 50 

5.7 Versioning .............................................................................................................. 50 

5.8 Canonical Data Model ........................................................................................... 51 

5.9 Operations ............................................................................................................. 51 

5.10 Sorting ................................................................................................................... 51 

5.11 Filtering .................................................................................................................. 51 

5.12 Paging .................................................................................................................... 51 

5.13 Response Statuses ................................................................................................. 52 

5.14 HTTP Header .......................................................................................................... 53 

5.15 Message format ..................................................................................................... 53 

5.16 Basic Data Formats ................................................................................................ 53 

5.17 Unique Identifier of the request and an algorithm for its generation .................. 54 

6 Security of information .................................................................................... 55 

6.1 TPP’s Authentication ............................................................................................. 55 

6.2 TPP’s Authorisation ............................................................................................... 55 

6.3 PSU’s Authorisation for Operations made by a TPP ............................................. 55 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 5 / 100 

6.4 Security in case of Mobile Apps ............................................................................ 55 

6.5 Data Validation and Integrity Assurance ............................................................... 56 

6.6 Cryptography ......................................................................................................... 56 

6.6.1 Registration of TPP client applications on the ASPSP's side ........................................ 57 

6.6.2 Management of the JWS-SIGNATURE certificates ...................................................... 64 

6.7 Protection against API Abuse ................................................................................ 65 

6.8 Audit Information Logging ..................................................................................... 65 

7 Technical Description of the Authentication and Authorisation Process ....... 66 

7.1 Scope and scope_details Parameters ................................................................... 66 

7.2 Redirection from the TPP to the ASPSP ................................................................ 67 

7.2.1 PSU’s authentication and authorisation ...................................................................... 67 

7.2.2 Reverse redirection of the PSU’s browser to the TPP ................................................. 67 

7.2.3 Token collected on the basis of the Authorization Code ............................................. 69 

7.2.4 Consent Withdrawal .................................................................................................... 69 

7.2.5 Use of the scope_details structure .............................................................................. 69 

7.3 Authentication Mechanism in an External Authorisation Tool (Decoupled) ........ 69 

7.4 Access token taking on the basis of the refresh token ......................................... 71 

7.5 New access token taking on the basis of the exchange token.............................. 72 

8 Technical description of the PIS Service .......................................................... 74 

8.1 Diagram of Activity in the PIS Service ................................................................... 74 

8.2 XS2A Interface Request Structure ......................................................................... 74 

8.3 Structure of call back interface requests - CallBack .............................................. 75 

9 Technical description of the AIS Service .......................................................... 76 

9.1 Diagram of Activity in the AIS Service ................................................................... 76 

9.2 XS2A Interface Request Structure ......................................................................... 76 

9.3 Structure of call back interface requests - CallBack .............................................. 77 

10 Technical Description of the CAF Service ........................................................ 78 

10.1 Diagram of Activity in the CAF Service .................................................................. 78 

10.2 XS2A Interface Request Structure (including a description of fields and 
information if required) ...................................................................................................... 78 

11 Use of the XS2A interface methods and authorization services – sequence 
diagrams ........................................................................................................................ 79 

11.1 Establishment of an XS2A session with the ASPSP-side PSU’s authentication ..... 80 

11.2 XS2A session establishment with the PSU's authentication using an external 
authorization tool (decoupled) ............................................................................................ 83 

11.3 Establishment of an XS2A session with the PSU’s authentication using the refresh 
token method ...................................................................................................................... 86 

11.4 Establishment of an XS2A session with the PSU’s authentication using the 
exchange token method ...................................................................................................... 86 

11.5 XS2A Interface Method Calling with the Use of a Session .................................... 88 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 6 / 100 

11.6 XS2A Interface Method Calling without the Use of a Session .............................. 91 

12 Error codes ....................................................................................................... 93 

13 Standard Implementation Recommendations ................................................ 99 

13.1 Timeout Support.................................................................................................... 99 

13.2 TPP verification ...................................................................................................... 99 

13.3 Authorization server .............................................................................................. 99 

13.4 Fraud Prevention ................................................................................................... 99 

14 List of Annexes ............................................................................................... 100 

 
  

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 7 / 100 

 

Table of Figures 

Figure 1: General diagram of PolishAPI Standard communication ............................................... 12 

Figure 2: General diagram of dependencies between actors in the PolishAPI Standard ............. 13 

Figure 3: Authentication in an external authorization tool .......................................................... 15 

Figure 4: Diagram of payment statuses ........................................................................................ 19 

Figure 5: PIS – ASPSP-side authentication .................................................................................... 35 

Figure 6: PIS – authentication in an external authorization tool .................................................. 36 

Figure 7: PIS – status request ........................................................................................................ 37 

Figure 8: PIS – payment cancellation – ASPSP-side authentication .............................................. 38 

Figure 9: PIS – payment cancellation – authentication in an external authorization tool ........... 39 

Figure 10: AIS – manual insertion of the account number – ASPSP-side authentication ............. 40 

Figure 11: AIS – manual insertion of the account number– authentication in an external 
authorization tool.......................................................................................................................... 41 

Figure 12: PIS – ASPSP-side account selection – ASPSP-side authentication ............................... 42 

Figure 13: AIS – account list retrieval – ASPSP-side authentication ............................................. 43 

Figure 14: AIS – account list retrieval – authentication in an external authorization tool ........... 44 

Figure 15: AIS – Account information retrieval without PSU’s participation ................................ 45 

Figure 16: AIS – consent withdrawal ............................................................................................. 45 

Figure 17: CAF – request for confirmation of funds ...................................................................... 46 

Figure 18: Multilayer XS2A session establishment diagram ......................................................... 49 

Figure 19: Authentication Mechanism on the ASPSP’s Side ......................................................... 67 

Figure 20: High-level diagram of activity in the PIS Service .......................................................... 74 

Figure 21: High-level diagram of activity in the AIS Service .......................................................... 76 

Figure 22: High-level diagram of activity in the CAF Service ......................................................... 78 

Figure 23: Establishment of an XS2A session – ASPSP-side authentication method .................... 80 

Figure 24: Establishment of an XS2A session –  authentication in an external authorization tool
 83 

Figure 25: XS2A session establishment – refresh token ............................................................... 86 

Figure 26: XS2A session establishment – exchange token ........................................................... 87 

Figure 27: XS2A interface method calling with the use of a session ............................................ 89 

Figure 28: XS2A interface method calling without the use of a session ....................................... 91 
 

 

  

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 8 / 100 

1 Glossary of Terms used in the Document 

Account Information Service (AIS) – as defined in Art. 66 of PSD2. 

Account Information Service Provider (AISP) – TPPs using the XS2A interface to access information 
about the PSU’s payment account. 

Confirmation of the Availability of Funds (CAF) – a service defined in Art. 65 of PSD2.  

External Authorization Tool (EAT) – a system providing the SCA procedure, i.e. the strong 
authentication of PSU. 

European Banking Authority (EBA) – the European Banking Authority. 

ETSI – European Telecommunication Standardisation Institute. 

OAuth2 – Oauth2 is an open authorisation standard. It allows users to share their private resources 
(e.g. pictures, films, contacts) stored at a given site with another party without a necessity to fathom 
the complexities of authorisation, usually providing the user name and a token (one-time passwords). 

Payment Initiation Service Provider (PISP) – TPPs using the XS2A interface to initiate the a payment 
transaction debited to the PSU’s account. 

Payment Initiation Services (PIS) – as defined in Art. 67 of PSD2. 

Payment Instrument Issuer Service Provider (PIISP) – TPPs using the XS2A interface to confirm the 
availability at the PSU’s payment account of an amount necessary to effect the payment transaction 
performed on the basis of an instrument issued by the PIISP. 

Payment Services Directive (PSD) – Directive 2007/64/EC of the European Parliament and of the 
Council on payment services in the internal market. 

Payment Services Directive 2 (PSD2) – Directive 2015/2366 of the European Parliament and of the 
Council on payment services in the internal market and repealing Directive 2007/64/EC. 

Payment Services User (PSU) – natural or legal person making use of a payment service in the capacity 
of either payer or payee, or both. 

Payment account – an account held in the name of one or more payment service users which is used 
for the execution of payment transactions. 

VAT account – an account with limited functionality, associated with a payment account. 

Regulatory Technical Standard (RTS) – Commission Delegated Regulation (EU) No. 2018/389 of 27 
November 2017 supplementing Directive (EU) 2015/2366 of the European Parliament and of the 
Council with regard to regulatory technical standards for strong customer authentication and common 
and secure open standards of communication. 

Revised Payment Services Directive (PSD2) – Directive (EU) 2015/2366 of the European Parliament 
and of the Council of 25 November 2015 on payment services in the internal market (revised payment 
services directive). 

Strong Customer Authentication (SCA) - means an authentication based on the use of two or more 
elements (components) categorised as knowledge (something only the user knows), possession 
(something only the user possesses) and inherence (something the user is) that are independent, in 
that the breach of one does not compromise the reliability of the others, and is designed in such a way 
as to protect the confidentiality of the authentication data. 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 9 / 100 

Swagger – is an open source software which helps design, build, document and consume the RESTful 
Web services. 

TS 119 495 – a technical specification of the standard concerning the qualified certificate profile for 
the needs of the Payment Services Directive (Electronic Signatures and Infrastructures (ESI); Sector 
Specific Requirements; Qualified Certificate Profiles and TSP Policy Requirements under the Payment 
Services Directive 2015/2366/EU), updated as at the date of publication of this standard.  

Granting Consent – a process in result of which the PSU grants TPP consent to access his/her account 
held by the ASPSP in order to effect a service, including the AIS, PIS and CAF services. 

Authentication – a process in result of which the ASPSP verifies the PSU's identity. 

Payment Services Act – Polish Payment Services Act of 19 August 2011. 

XS2A (Access to Account) – access to payment accounts used to perform AIS, PIS, CAF and other 
services effected as part of the PolishAPI. 

Premium Scope  of the AIS, PIS and CAF services – services exceeding the requirements laid down in 
PSD2. 

Compliance Scope of the AIS, PIS and CAF services – services required by PSD2. 

  

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 10 / 100 

2 Introduction 

2.1 Context 

The implementation by the European Union of the new directive on payment services in the internal 
market (PSD2) introduces a possibility to offer new products and services related not only to the 
payment service market but also the financial service market in the wider sense. Both the entities 
present on the market, such as banks, cooperative savings and credit unions (SKOK) or branches of 
foreign credit institutions, as well as new types of entities (third party providers - TPP) will be able to 
take advantage of the possibility to offer new services built on the basis of the PSD2 Directive, the 
implementing acts (including the regulatory technical standards - RTS) and national acts of law. The 
new categories of services are: 

a) Account Information Service (AIS) – as defined in Art. 67 of PSD2 
b) Payment Initiation Service (PIS) – as defined in Art. 66 of PSD2 
c) Confirmation of the Availability of Funds (CAF) – as defined in Art. 65 of PSD2 

Allowing the performance of the above-mentioned services by entities authorised to do so required 
the preparation by account servicing payment service providers (ASPSP) of dedicated interfaces 
allowing access to payment accounts (the XS2A interface) by authorised third party providers (TPP), 
based on an open API. 

Banks and other entities cooperating with the Polish Bank Association took a decision on the creation 
of a common and universal API standard drawing on the existing achievements of the Polish banking 
and payment sectors, the best practices and experiences, including those resulting from foreign API 
standards, as well as the existing interfaces of the interbanking infrastructure. Banks and other ASPSP 
will be able to implement the standard, depending on the business decisions they take independently. 
During the work of the business, IT, security and legal task forces, assumptions were formulated and 
then the standard description was created as presented herein below. 

The basis assumed for this standard version was the Delegated Regulation with regard to regulatory 
technical standards for strong customer authentication and common and secure open standards of 
communication (RTS), as published in the Official Journal of the European Union on 13 March 2018 
(https://eur-lex.europa.eu/legal-
content/PL/TXT/?uri=uriserv:OJ.L_.2018.069.01.0023.01.POL&toc=OJ:L:2018:069:TOC). 

The following entities took part in the preparation of this standard (in an alphabetical order): 
1) Allegro Group 
2) Biuro Informacji Kredytowej S.A. 
3) Billbird S.A. 
4) Blue Media S.A. 
5) Diners Club Polska 
6) Krajowa Izba Rozliczeniowa S.A. 
7) Kontomierz.pl Sp. z o.o. 
8) National Savings and Credit Union 
9) Polish Association of Cooperative Banks 
10) PayU S.A. 
11) Polish Chamber of Information Technology and Telecommunications (PIIT) 
12) Polish Insurance Association (PIU) 
13) Polski Standard Płatności Sp. z o.o. 
14) Polish Organisation of Non-banking Payment Institutions (PONIP) 
15) Skycash Poland S.A. 
16) F. Stefczyk Cooperative Savings and Credit Union 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/
https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=uriserv:OJ.L_.2018.069.01.0023.01.POL&toc=OJ:L:2018:069:TOC
https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=uriserv:OJ.L_.2018.069.01.0023.01.POL&toc=OJ:L:2018:069:TOC


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 11 / 100 

17) Polish Bank Association together with its associated bank members1 
 
The specification draft was subject to public consultation (between 17-31 January 2018), in result of 
which 21 Polish and foreign entities submitted approx. 300 comments and observations, partially 
allowed for in this document.  

2.2 Document Structure 

The document consists of two fundamental parts and of annexes: 
a) Part concerning the business characteristics of the PolishAPI Standard (Chapters  2 – 4) 
b) Part concerning the technological solutions adopted in the PolishAPI Standard (Chapters 0 – 

13) 
c) Annexes, the list of which is given in Chapter 14 

2.3 Mission of the PolishAPI Standard 

The main objective of this document is to define interfaces for services described in PSD2 and related 
acts of law as regards the interactions between ASPSPs and TPPs during the performance of the AIS, 
PIS and CAF services. The requirement of open APIs also provides a chance that ASPSPs and TPPs will 
obtain an opportunity under a single standard to offer not only law-required services but also 
additional services the scope of which exceeds the framework defined by the legislator. Therefore, the 
following scopes of services can be identified within the PolishAPI standard: 

a) Compliance Scope of the AIS, PIS and CAF services - services required by PSD2, 
b) Premium Scope  of the AIS, PIS and CAF services - services exceeding the requirements laid 

down in PSD2, outside the scope of this document. 

Each ASPSP and TPP may use the PolishAPI standard as an open standard. The application of the 
standard is not mandatory. Each of the entities operating on the market on the basis of the PSD2 
Directive may use any solution compliant with PSD2 and the related acts of law. 

The interactions between the TPPs and PSUs and between ASPSPs and PSUs, as well as the matters 
related to the processes of making an entry in the national register of TPPs, and of granting of 
authorisations for the operation of TPPs in the scope related to PSD2-related services by public 
administration authorities are outside the scope of this document. 

A part of the problems remaining within the standard specification scope will be systematically added 
over time as the project and agreement work (including public consultation) will advance. The above 
reservation concerns, without limitation, the problems related to specific functionalities of business 
and corporate accounts (e.g. a multi-signature). 

 
1 Alior Bank S.A., Bank BGŻ BNP Paribas S.A., Bank Handlowy w Warszawie S.A., Bank Millennium S.A., Bank Pekao S.A., 

Bank Pocztowy S.A., Bank Polskiej Spółdzielczości S.A., Bank Zachodni WBK S.A., Credit Agricole Bank Polska S.A., 

Deutsche Bank Polska S.A., DNB Bank Polska S.A., Eurobank S.A., Getin Noble Bank S.A., Idea Bank S.A., ING Bank Śląski 

S.A., mBank S.A., Nest Bank S.A., PKO Bank Polski S.A., Raiffeisen Bank Polska S.A., SGB-Bank S.A. 

 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 12 / 100 

2.4 Main Assumptions 

2.4.1 Actors in the PolishAPI Standard-defined Processes 

The standard defined only three categories of actors that can take part in processes defined by the 
PolishAPI standard: 

a) Payment Service User (PSU) – User of the payment account the given payment transaction 
refers to 

b) Account Servicing Payment Service Provider (ASPSP) – Provides maintaining the payment 
account and making the XS2A interface available for TPPs 

c) Third Party Provider (TPP) – Entity using the XS2A interface on the basis of and in accordance 
with the consents granted by the PSUs. The ASPSP may also act as a TPP and use the interfaces 
made available by other ASPSPs 

 

Figure 1: General diagram of PolishAPI Standard communication 

The standard defined three roles which the actors taking part in the PolishAPI standard-defined 
processes can play. The categorisation below does not restrict the entities acting as TPPs to apply for 
an entry in the national register in more than a single role but aims at defining the roles of particular 
actors in the description of communication under the PolishAPI standard. 

a) Account Information Service Provider (AISP) – TPPs using the XS2A interface to access 
information about the PSU’s payment account. 

b) Payment Initiation Service Provider (PISP) – TPPs using the XS2A interface to initiate the a 
payment transaction debited to the PSU’s account. 

c) Payment Instrument Issuer Service Provider (PIISP) – TPPs using the XS2A interface to confirm 
the availability at the PSU’s payment account of an amount necessary to effect the payment 
transaction performed on the basis of an instrument issued by the PIISP. 

 
 
 
 
 
 
 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 13 / 100 

The actors may play the following roles: 

                         Actor 

Role  
PSU ASPSP TPP 

AISP NO YES YES 

PISP NO YES YES 

PIISP NO YES YES 

 

 

Figure 2: General diagram of dependencies between actors in the PolishAPI Standard 

2.4.2 Requirements concerning Actors in the PolishAPI Standard-defined 
Processes 

a) The ASPSP must implement an XS2A interface compliant with the PolishAPI standard. The 
ASPSP may also implement other XS2A interface standards, which however will not be covered 
by the scope of this document 

b) The interfaces implemented by ASPSPs must be compliant with PSD2, the Payment Services 
Act and related acts, in particular the RTSs 

c) The TPP must be registered in at least one register of the European Union Member State in 
the role it intends to play during the PolishAPI standard-based communication 

d) The TPP and ASPSP must have a valid certificate used for mutual identification in the XS2A 
interface obtained from a qualified provider of trust services and meeting the regulatory 
requirements concerning the electronic identification and trust services. The certificate should 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 14 / 100 

additionally meet the requirements defined in the RTSs and in the ETSI technical specification 
(TS 119 495). 

e) PSU may be present in the context of an account for individual clients and in the context of an 

account for corporate (business) clients. The context of an account for an individual client is 

the default one. For calls in the context of an account for a corporate client, there must be the 

‘isCompanyContext’ tag sent with the value of ‘true’ in the body of the request sent as per 

the technical specification.  

f) Additional parameters allowing the narrowing down of the business scope of information 

returned by the XS2A interface are the following: 

• psuIdentifierType – type of PSU’s identifier (the available range of identifiers may be 

different for each ASPSP and must be defined by it - in the form of a dictionary of 

values - in a detailed XS2A interface specification). The value of this parameter is used 

to indicate the information on the basis of which the PSU to be authenticated will be 

identified. The parameter is not required. 

• psuIdentifierValue – value of PSU’s identifier. The parameter is required only in case 

a non-empty value of the psuIdentifierType parameter is produced. 

• psuContextIdentifierType – Type of identifier of the context in which the PSU is 

present. (the available range of identifiers may be different for each ASPSP and must 

be defined by it - in the form of a dictionary of values - in a detailed XS2A interface 

specification). The parameter is required conditionally - in case a request is sent to 

such a PSU that may be present in more than one context in the ASPSP selected, 

• psuContextIdentifierValue – value of identifier of the context in which the PSU is 

present. The parameter is required conditionally - in case a non-empty value of the 

psuContextIdentifierType is produced. The said parameters are used to indicate a 

more detailed context of the XS2A interface method calling. The parameters should 

be used, for example,  in case of such a PSU, who is at the same time a proxy to 

accounts of many clients with the given ASPSP.  

2.4.3 PSU Authentication Mechanisms 

The PolishAPI Standard allows the PSU authentication mechanisms as listed below. The ASPSP may 
freely select the authentication method. The selection made should be compliant with the regulations 
in force. 

2.4.3.1 Authentication Mechanism on the ASPSP’s Side 

The PolishAPI Standard allows the use of a mechanism of ASPSP-side authentication, which assumes a 
redirection to the ASPSP’s website during the execution of the AIS, PIS and CAF services. This means 
that the PSU’s authentication and authorisation data are given exclusively at the ASPSP’s website. The 
PSU is authenticated in the ASPSP’s interface. 

2.4.3.2 Authentication Mechanism in an External Authorisation Tool (Decoupled) 

The PolishAPI Standard allows the use of an authentication mechanism using an external authorization 

tool during the performance of the AIS and PIS services. The mechanism of authentication in an 

external authorisation tool has been presented at a high level in the diagram below. Details concerning 

its use have been described in chapter 7.3.   

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 15 / 100 

 

Figure 3: Authentication in an external authorization tool 

The following assumptions have been made:  

• ASPSP cooperates with the provider of an external authorization tool (hereinafter referred to 
as EAT). 

• PSU holds an account with EAT and has taken steps necessary to use the code generator 
function. 

• ASPSP prepares a message containing basic information about the transaction displayed in EAT 
before confirmation.  

2.4.3.2.1 Code acquisition from EAT: 

 

• 001 / In order to obtain an EAT code, PSU logs into a dedicated tool compliant with PSD2 and 
with ASPSP’s safety requirements. 

• 002 / EAT supports PSU’s logging in and generates an EAT code. 

• 003 / EAT displays the code to PSU. 

• 004 / PSU acquires the EAT code generated. 

2.4.3.2.2 PSU's authentication using EAT: 

 

• 101 / PSU inserts the EAT code in the instruction form at TPP’s. 

• 102 / TPP forwards the request to start a session with XS2A and to send the EAT code to ASPSP. 

• 103 /  ASPSP verifies TPP, there is, inter alia, a verification of TPP’s certificate. 

• 104 / ASPSP initiates the EAT code verification and provides information concerning the use of 
a 2nd factor by EAT and basic information about the transaction. 

• 105 / EAT verifies the code. 

• 106 / EAT displays to the user the information about the transaction in process (agreed details) 
– optionally, in this step the user determines the source account (PIS) or an account/accounts 
covered by the consent (AIS), if this has not been defined by the TPP in the API call. 

• 107 / EAT performs authentication – the 2nd factor is used as per ASPSP’s request. 

• 108 / EAT sends information to ASPSP about a correctly identified EAT code. 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 16 / 100 

• 109 / ASPSP provides the authorization code and the result of PSU’s authentication to TPP. 

• 110 / TPP starts a session with XS2A using the authorization code.  

• 111 / ASPSP establishes a session and provides an access token to TPP. 

• 112 / TPP recalls the XS2A interface service using the access token. 

2.4.3.3 Other Authentication Mechanisms 

The standard may contain a description of other mechanisms of authentication which meet the 
regulatory requirements and requirements agreed during the work of the project group. They will be 
published in subsequent versions of this document. 

2.4.4 Management of PSU’s Consents for the Performance of Services by a TPP 

Pursuant to PSD2, the TPP may perform services for a PSU only upon his/her consent and within the 
scope covered by such consent. The PolishAPI standard defines the framework of consent grant and 
revocation by PSUs. 

2.4.4.1 Process of Granting Consent by PSU to Effect the PIS Service 

It is assumed that the payment initiation process (with the current date, future date, recurring 
payments and multiple payments, as described in Chapter 3.1.1) performed is each time related with 
the consent expressed for this purpose by the PSU in the TPP’s interface. The processes of consent 
granting, payment initiation and payment status retrieval in obligatory variants assuming a TPP-side 
manual insertion of the account number and the ASPSP-side account selection as well as the payment 
cancellation have been presented in the diagrams and in the descriptions in Chapter 4.  

2.4.4.2 Process of Granting Consent by PSU to Effect the AIS Service 

In this Chapter, the term ‘consent’ refers exclusively to the provision of the AIS service and means the 
grant of consent for the service without indicating specific accounts (in case of an option with the 
ASPSP-side account indication or with a retrieval of a list of accounts) or with an indication of the same 
(in case of an option with a manual account number insertion). This process is always linked with the 
strong customer authentication (SCA). 
Determination of access parameters (in case of an option with the ASPSP-side account indication or 

with a retrieval of a list of accounts) means each operation on specific accounts within the limits of the 

consent to effect the AIS services, including: 

• indication of a specific account 

• change of parameters for a specific account (e.g. date of access) 

• withdrawal of indication of a specific account or 

• withdrawal of consent 

These operations do not require the strong customer authentication (SCA). 

The standard allows three processes of granting a consent for the AIS service (in options allowing the 
authentication on the ASPSP’s side and in an external authorisation tool): 

• with a manual insertion of the account (accounts) number 

• with the ASPSP-side account (accounts) number selection (only in the option with the ASPSP-
side authentication) 

• with the account list retrieval. This process is an optional process and its implementation 
depends on the ASPSP’s decision. 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 17 / 100 

The processes of consent granting and account information retrieval in the above-mentioned variants 
have been presented in the diagrams and descriptions in Chapter 4. 

2.4.4.3 Process of Granting Consent by PSU to Effect the CAF Service 

The process of the PSU’s granting a consent for the ASPSP to effect the CAF service will be developed 
in the next version of this document. For the purposes of the current version, it is assumed that the 
request within the CAF service is made exclusively in the situation when the consent has been made 
previously. The fund availability request process has been presented at the diagram and in the 
description in Chapter 4.  

2.4.5 Application of the Strong Customer Authentication (SCA) Mechanism 

ASPSPs use any given strong PSU authentication system (SCA) they selected and the PolishAPI standard 

does not define and does not recommend any way in which this procedure may be conducted. 

Furthermore, the decision to release a given transaction from the SCA procedure remains in the 

exclusive competence of the ASPSP. 

2.4.6 Provision of Services within the Compliance Scope 

Each ASPSP is obliged to make available the services from the Compliance Scope pursuant to PSD2 and 

the related acts of law. ASPSP makes the accounts available in accordance with the definition given in 

Chapter 3.2.1 and takes independent decisions as to the scope of payment account data available 

online within the framework of this service. The performance of services within the Compliance Scope 

will not require a contractual relation between the ASPSP and the TPP. 

2.4.7 Provision of Services within the Premium Scope 

Each ASPSP takes the decisions on making available the services within the Premium Scope and, in case 
of a decision to start offering them, determines the extent of such services independently. The 
performance of services within the Premium Scope will require a contractual relation between the 
ASPSP and the TPP. 

2.5 Development of the PolishAPI Standard 

Currently, the PolishAPI standard defines the Compliance Scope of the AIS, PIS and CAF services. A 
permanent development of the standard in response to regulatory, technological and business 
changes on the Polish and European market is assumed. The changes will be published as subsequent 
versions of the PolishAPI standard specification. 

  

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 18 / 100 

3 Business Definition of the Compliance Scope Services 

3.1 Business Definition of the Compliance Scope for the PIS Service 

The Payment transaction initiation service within the Compliance Scope consists in making available 
by the ASPSP of a possibility to initiate a payment from the payment account by the PSU via a TPP who 
acts as a PISP after obtaining prior consent from the PSU as appropriate. 

3.1.1 Types of Transactions within the Compliance Scope 

As part of the PIS service within the Compliance Scope, the ASPSP will make available to the PSU, via 
the TPP (PISP), an initiation of payments that meet the following cumulative conditions: 

a) The payment is a bank transfer 
b) The payment is a single transfer, a recurring transfer (a series of transfers), understood as a 

definition of such a transfer or a multiple payment (transfer batch), whereby a batch of 
transfers may be made up exclusively of transfers of the same type from a single account 
number (e.g. exclusively domestic transfers or exclusively EEA transfers) 

c) The payment is a transfer with a current date or a future date 
d) If it is a domestic transfer, it is settled using one of the following systems (depending on which 

of the systems is supported by the ASPSP): 
a. Elixir, 
b. Express Elixir, 
c. SORBNET2, 
d. Blue Cash. 

e) If the payment is a foreign transfer, it is settled in one of the systems listed below: 
a. SWIFT 
b. SEPA 
c. TARGET 

f) It is available in the online interface of the given ASPSP 
g) The PSU will complete all the data required to order a transfer (the ASPSP will not provide 

support in the form of dictionaries, dropdown lists or other creators) or,in case of a process 
allowing for the ASPSP-side account selection, all the data save the number of the account 
from which the payment will be initiated 

A multiple transfer (transfer batch) may be made in the following two ways:  
a) the PSU defines n transfers at the TPP’s interface side, then the strong authentication 

procedure is effected, during which all the payments defined are confirmed at the same time, 
b) The PSU uploads a structured file where any given structure supported by the ASPSP will be 

placed. A transfer of such a file is related to the strong authentication procedure (a business 
description and the API method for this process variant will be added in the subsequent 
version of the specification). 

It is also possible to initiate a split payment, i.e. a payment in which the payment amount is transferred 
to two recipient's accounts (current account and VAT account). 

The data given by the TPP in the transfer order should not be modified by the PSU in the ASPSP’s 
domain. Each ASPSP is obliged to make available the services from the Compliance Scope pursuant to 
PSD2 and the related acts of law. The ASPSP takes an independent decision about the scope of online 
services provided and the data concerning the payment accounts available under the service. also on 
the basis of the availability of particular services in the online banking of the given ASPSP. The 
performance of services within the Compliance Scope will not require a contractual relation between 
the ASPSP and the TPP. 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 19 / 100 

3.1.2 Transaction cancellation 

The following may be cancelled: 
a) single payments with a future date with the ‘scheduled’ status,  
b) recurring payments (definition of payments), 
c) single payments with a future date defined as part of a multiple payment (batch of transfers), 

with the ‘scheduled’ status.  

Provided the ASPSP offers such a functionality, it is also possible to cancel a multiple payment (batch 
of transfers) as a whole, subject to a reservation that if at the moment of cancellation the batch 
comprises transfers that have already been done, such cancellation does not have any impact on the 
same and the cancellation concerns only payments with a future date.   

3.1.3 Information about the Transaction Status 

As part of the message exchange in the PIS service within the Compliance Scope, the ASPSP will 
immediately advise the TPP about the order acceptance or rejection. Additionally, the TPP will be able 
to retrieve information about the payment status using the getPayment method with an option to 
enquire about the status of many payments (getMultiplePayments), provided the ASPSP offers such a 
functionality. The ASPSP will have an optional possibility to transfer (asynchronously) to the TPP  the 
information about the payment status using the /{version}/accounts/{version}/paymentCallBack and 
the recurring payment definition status  /{version}/accounts/{version}/recurringPaymentCallBack 
method. 

The following statuses are defined: 
a) Submitted 
b) Scheduled 
c) Cancelled 
d) Pending 
e) Rejected 
f) Done 

 

Figure 4: Diagram of payment statuses 

Multiple payments (batches of transfers) have the following statuses:   
a) inProgress – contain at least one transaction with a future date;  

b) partiallyDone – contain at least one transaction with a Done status; 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 20 / 100 

c) cancelled;  

d) done – all transactions of the bundle have the Done status 

The definition of a recurring payment has the following statuses:  

a) The definition of a recurring payment (a standing order) has been correctly sent and 

accepted on the ASPSP’s side (submitted) 

b) The recurring payment (standing order) is defined correctly and is executed as per the time 

schedule (final date in the future or indefinitely) (in progres) 

c) The definition of a recurring payment (standing order) has been deleted and is not executed 

(cancelled) 

d) The definition of a recurring payment (standing order) had a final date that expired and is no 

longer executed (closed). 

3.1.4 Definition of a Payment Account 

This service is provided only for payment accounts to which the given PSU has an on-line access. The 
account must meet all of the following cumulative conditions: 

a) It is an account held for one or more users which is used to effect payment transactions (as 
per the definition laid down in the PSA). 

b) The PSU has an on-line access to the account. 

3.1.5 List of Fields Required by the ASPSP in the Compliance Scope 

In order to initiate the PIS service payment transaction within the Compliance Scope correctly, the 
ASPSP may request from the PSU, via the TPP (PISP), that the following fields be completed with 
transaction order data. Each ASPSP may expect the PSU to transfer another set of data via the TPP. 

With reference to foreign transfers, the use of certain fields will be optional, depending on the 
functionalities supported by the given ASPSPs. The ASPSP will effect the payments on condition that 
the payment will be initiated as appropriate by the TPP, i.e. appropriate fields with appropriate content 
are submitted. 

Mandatory fields defining the TPP: 
a) TPP’s name 

3.1.5.1 National transfer 

FIELD NAME REQUIRED COMMENTS 

Address of the transfer payee No  

Effective date of the transfer No 
For the future effective date of the transfer, the 
urgency mode refers to that date 

Transfer amount Yes  

Name of the transfer sender No 

Sender's name completed by the ASPSP in order 
to avoid a situation when the transfer order 
coming from the ASPSP contains data other than 
data of the holder of the account debited. 

Name of the transfer payee Yes  

Transfer sender’s account number Yes 
Given by the TPP or selected by the PSU after 
redirection to the ASPSP. 

Transfer payee’s account number Yes  

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 21 / 100 

Transfer description field Yes  

Urgency mode Yes ExpressD0, StandardD1 

Transfer type (system) Yes 
In case of a domestic transfer: Elixir, 
ExpressElixir, Sorbnet, BlueCash, Internal 

Currency No 
In case the field is empty, the ASPSP will make 
the transfer in the account currency. 

Block No 

Bool type field, owing to which the client will be 
able to make an explicit wish to make a block (in 
case of, e.g. a payment order on a free day). A 
default behaviour in case the parameter is not 
provided is defined by ASPSP. 

Transaction ID as assigned by the TPP Yes  

Transfer execution mode Yes 

What mode the transfer will be made in. As per 
the possibilities described in the following 
dictionary: 
- Immediate 
- Future date 

Is payment using the Split Payment 
mechanism 

No Value determining whether the transfer is 
initiated using the Split Payment mechanism. 
The default value is false 

Invoice number Conditionally Invoice number that the transfer relates to. 
Required when the Split Payment mechanism is 
used. 

Transfer recipient's ID Conditionally For example, tax identification number. 
Required when the Split Payment mechanism is 
used. 

VAT amount Conditionally Required when the Split Payment mechanism is 
used. 

Additional description No 
 

3.1.5.2 Domestic transfers to tax authorities / customs authorities in Poland 

FIELD NAME REQUIRED COMMENTS 

Address of the transfer payee Yes   

Data of the authorities    

Effective date of the transfer No 
For the future effective date of the transfer, the 
urgency mode refers to that date 

Payer's ID Yes  

Payer’s ID type Yes 

Dictionary:  

N - NIP, P - PESEL, R - REGON, 1 – ID card 
number, 2 – Passport number, 3 - Other 

Liability ID No  

Transfer amount Yes  

Name of payer No 

Sender's name completed by the ASPSP in 
order to avoid a situation when the transfer 
order coming from the ASPSP contains data 
other than data of the holder of the account 
debited. 

Period number Yes  

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 22 / 100 

Transfer sender’s account number Yes 
Given by the TPP or selected by the PSU after 
redirection to the ASPSP. 

Transfer payee’s account number Yes   

Form symbol Yes   

Period type Yes   

Urgency mode Yes ExpressD0, StandardD1 

Transfer type (system) Yes Standard (Elixir), express (ExpressElixir) 

Currency Yes   

Block No 

Bool type field, owing to which the client will be 
able to make an explicit wish to make a block 
(in case of, e.g. a payment order on a free day). 
A default behaviour in case the parameter is 
not provided is defined by ASPSP. 

Transaction ID as assigned by the TPP Yes  

Transfer execution mode Yes 

What mode the transfer will be made in. As per 
the possibilities described in the following 
dictionary: 
- Immediate 
- Future date 

3.1.5.3 EEA foreign transfer 

FIELD NAME REQUIRED COMMENTS 

Address of the transfer payee No   

Effective date of the transfer No 
For the future effective date of the transfer, the 
urgency mode refers to that date 

Transfer amount Yes   

Name of the transfer sender No 

Sender's name completed by the ASPSP in 
order to avoid a situation when the transfer 
order coming from the ASPSP contains data 
other than data of the holder of the account 
debited. 

Name of the transfer payee Yes   

Transfer sender’s account number Yes 
Given by the TPP or selected by the PSU after 
redirection to the ASPSP. 

Transfer payee’s account number Yes   

Transfer payee’s country code Yes As per ISO 3166-1 alfa-3 

Transfer description field Yes   

Urgency mode Yes Standard, express 

Transfer type (system) No SEPA, Instant SEPA, Target 

Currency No Constant value - EUR 

Block No 

Bool type field, owing to which the client will be 
able to make an explicit wish to make a block 
(in case of, e.g. a payment order on a free day). 
A default behaviour in case the parameter is 
not provided is defined by ASPSP. 

Transaction ID as assigned by the TPP Yes  

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 23 / 100 

Transfer execution mode Yes 

What mode the transfer will be made in. As per 
the possibilities described in the following 
dictionary: 
- Immediate 
- Future date 

 

3.1.5.4 Foreign transfer other than EEA 

FIELD NAME REQUIRED COMMENTS 

Effective date of the transfer No 
For the future effective date of the transfer, the 
urgency mode (of the transfer) refers to that 
date 

Transfer sender’s account number Yes 
Given by the TPP or selected by the PSU after 
redirection to the ASPSP. 

Transfer payee’s account number Yes  

Name of the transfer sender No 

Sender's name completed by the ASPSP in 
order to avoid a situation when the transfer 
order coming from the ASPSP contains data 
other than data of the holder of the account 
debited. 

Name of the transfer payee Yes  

Address of the transfer payee No  

Transfer payee’s country code Yes As per ISO 3166-1 alfa-3 

Transfer description field Yes  

Transfer amount Yes  

Currency Yes  

BIC/SWIFT of the payee’s bank No 

Conditional fields – required depending on the 
final specification of the Bank implementing 
the PolishAPI standard  

Country of the payee’s bank No 

Name of the payee’s bank No 

Address of the payee’s bank No 

Code of the payee’s bank No 

Cost clause No  

Urgency mode Yes Standard, urgent, express 

Transfer type (system) No SWIFT 

Block No 

Bool type field, owing to which the client will be 
able to make an explicit wish to make a block 
(in case of, e.g. a payment order on a free day). 
A default behaviour in case the parameter is 
not provided is defined by ASPSP. 

Transaction ID as assigned by the TPP Yes  

Transfer execution mode Yes 

What mode the transfer will be made in. As per 
the possibilities described in the following 
dictionary: 
- Immediate 
- Future date 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 24 / 100 

The ASPSP may, for the authorization of transfers the necessary parameters of which were not 
stipulated in the table above, define and document a set of such additional parameters. The 
parameters should be optional (and, if possible, should have a default value specified) for all the 
transfers the execution of which is possible without their specification (i.e. for countries where the 
accounts may be addressed correctly using the fields from the table above). The interpretation of the 
above additional parameters may not lead to any contradiction with the published meaning of the 
parameters defined in the standard. 

3.1.5.5 Recurring payment (standing order) 

Each payment type may be defined as a recurring payment (standing order), assuming that it is to be 
effected in favour of the same beneficiary and in the same amount. In that case, apart from the data 
defined in the chapters above, it will be necessary to specify the following data:  

 

FIELD NAME REQUIRED COMMENTS 

Start date (Date when the first payment 
is to be executed) 

Yes 
Data of execution of the first payment in the 
cycle defined 

Frequency Yes 
Defines how often a recurring transfer is to be 
executed. 

periodType Yes Type of time period unit 

periodValue Yes Value of the time period unit 

End date (Latest possible transfer date) No 
Defines the latest possible date when a 
recurring transfer can be executed. 

Execution on a bank holiday Yes 
Defines the behaviour in case the transfer date 
is a bank holiday, possible values are: ‘before’ 
and ‘after’ the bank holiday.  

 

3.1.5.6 Cancellation of an initiated payment 

FIELD NAME REQUIRED COMMENTS 

Payment identifier Conditionally 
Required for a single payment cancellation 
request 

Identifier of a batch of transfers Conditionally 
Required for a batch of transfers cancellation 
request 

3.1.5.7 Cancellation of a recurring payment definition 

FIELD NAME REQUIRED COMMENTS 

Recurring payment identifier Yes 
Recurring payment identifier assigned by the 
ASPSP 

 

3.1.6 Diagrams of requests under the PIS Service within the Compliance Scope 

The diagrams have been presented in Use Case #1 in Chapter 4. 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 25 / 100 

3.1.7 Authorisation of a payment transaction initiated by means of a PIS service 

The ASPSP provides a possibility to authorise a payment transaction ordered by the PSU under a 
payment initiation service within the understanding of the Payment Services Act (PSA), irrespective of 
the authorisation method and its complexity. The authorisation method is selected by the ASPSP. 

3.2 Business Definition of the Compliance Scope for the AIS Service 

The account information service within the Compliance Scope consists in making available by the 
ASPSP of data concerning the transaction history and selected information about the payment account 
to which the PSU has an active on-line access. The access is granted to a TPP acting as an AISP after a 
prior acquisition of consent as appropriate from the PSU. Additionally, the ASPSP makes available its 
data filtering mechanisms in accordance with the criteria available on-line in the ASPSP system (i.e. via 
the electronic banking), e.g.: 

a) The transaction booking date (as per the indicated specific booking date and within the 
specified range of dates) 

b) The transaction amount 
c) The payment account debits and credits 

3.2.1 Definition of a Payment Account 

This service is provided only for payment accounts to which the given PSU has an on-line access. The 
account must meet all of the following cumulative conditions: 

c) It is an account held for one or more users which is used to effect payment transactions (as 
per the definition laid down in the PSA). 

d) The PSU has an on-line access to the account. 

3.2.2 Frequency of Requests within the Compliance Scope 

As part of the AIS service within the Compliance Scope, the TPP (AISP) may request that the ASPSP sent 
a payment account history and selected information about the payment account: 

a) Up to 4 times within a 24 hour time span from the first request in case when the data collection 
is not initiated at the PSU’s request via the TPP (AISP), but by TPP (AISP) on the basis of consent 
provided earlier by the PSU; 

b) In each instance when the request is initiated directly by PSU via the intermediation of the TPP 
(AISP). 

If a request that have not been initiated at the PSU’s request, contains result paging, it should be 
treated as a single request. The functionality f request counting over the time interval set remains at 
the discretion of the ASPSP at the implementation level, whereby one should allow for the business 
logic of the request which may be executed by calling a few interface methods (e.g. a request for 
account transaction history is related with the calling of the following methods: getTransactionsDone, 
getTransactionsPending, getTransactionsScheduled, getTransactionsCancelled, getHolds and 
getTransactionDetail – the calling of all the interface methods mentioned should be treated as a single 
request.  

A higher frequency of requests in case when the data collection is not initiated at the PSU’s request 
via the TPP (AISP) but by the TPP (AISP) on basis of consent expressed earlier by the PSU may be 
allowed with regard to the AIS service only in the Premium Scope and is subject to separate bilateral 
arrangements by and between the ASPSP and the TPP (AISP). 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 26 / 100 

3.2.3 Scope of Information concerning the Payment Account History within the 
Compliance Scope 

Within the Compliance Scope, the AIS service comprises the provision to the PSU, together with data 
filtering mechanisms (including transaction history date scopes), of all available on-line account history 
of transactions booked, pending and rejected at the given payment account and blocked funds, which 
are visible to the PSU in the APSPS’s on-line channel. Whereby, a pending transaction means a 
transaction that is not booked, not modifiable and which influences the available funds (available 
balance); a scheduled operation means a payment ordered with a future date. Pursuant to the 
regulations, the provision of the account history is related to the SCA process always (irrespective of 
the exclusions from the SCA application obligation applied), when the client obtains an online account 
access for the first time and when the request concerns a history of 90+ days. The SCA may be 
abandoned if the request concerns a history of payment transactions effected within the last 90 days, 
on condition that no more than 90 days have lapsed since the access to a history of not more than 90 
days was obtained and the SCA was applied. The strong re-authentication of the PSU after the expiry 
of the 90-day period following the previous strong authentication, if the service scope has not changed, 
is carried out using the consentid, without a necessity to resubmit the account access parameters as 
defined earlier by the PSU. The TPP may initiate this process before the expiry of the 90-day period, 
extending thus the period during which the PSU will have access to the data without a necessity of a 
strong authentication.  

3.2.4 List of Fields Required by the ASPSP in the Compliance Scope 

In response to the requests sent by the TPP (AISP), the ASPSP sends responses concerning the following 
fields, as arranged by the interface methods. 
/getAccount 
 

FIELD NAME REQUIRED COMMENT 

Account number YES  

Account type NO Dictionary value 

Account type name NO ASPSP-defined 

Type of account holder YES Natural person or legal person 

Account name NO Client-set 

Account currency YES  

Available funds YES  

Book balance of the account YES  

Bank’s BIC/SWIFT NO  

Bank’s name 
NO 

 

PSU’s Name Surname or 
Business Name 

NO  

Type of relation between PSU 
and an Account 

YES Dictionary value 

Type of relation between PSU 
and an Account 

NO Dictionary value 

VAT account number No A number that is associated with a given current/deposit 
account 

Numbers of current/deposit 
accounts 

No List of all numbers of current/deposit accounts that are 
associated with a given VAT account 

 
/getTransactionsDone 
 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 27 / 100 

FIELD NAME REQUIRED COMMENT 
Element ID YES Transaction or hold ID assigned by the ASPSP 

The transaction amount YES  

Currency of transaction NO ISO code of the transaction currency 

Transaction title YES  

Operation Date NO  

MCC code 
NO Merchant Category Code for each transaction/operation 

made using a card 

Transaction type NO  

Transaction category YES credit/debit 

Transaction status NO Dictionary value 

Originator’s data 
NO In case of transactions originated by people other than the 

account holder, name and address 

Sender’s account number NO  

Sender's virtual account 
number 

NO 
IBAN format 

BIC/SWIFT of the sender's Bank NO For foreign transfers only 

Name of the sender's Bank NO For foreign transfers only 

Code of the sender’s Bank NO For foreign transfers only 

Code of the sender’s country NO For foreign transfers only 

Address of the sender’s bank NO For foreign transfers only 

Sender's data NO Name and address 

Payee’s account number NO  

Payee's account virtual number NO IBAN format 

BIC/SWIFT of the payee’s bank NO For foreign transfers only 

Name of the payee’s bank NO For foreign transfers only 

Code of the payee’s bank NO For foreign transfers only 

Code of the payee’s country NO For foreign transfers only 

Address of the payee's bank NO For foreign transfers only 

Payee’s data NO Name and address 

Book date NO  

Book balance NO Account book balance after the transaction 

 
/getTransactionsPending 
 

FIELD NAME REQUIRED COMMENT 
Element ID YES Transaction or hold ID assigned by the ASPSP 

The transaction amount YES  

Currency of transaction NO ISO code of the transaction currency 

Transaction title YES  

Operation Date NO  

MCC code 
NO Merchant Category Code for each transaction/operation 

made using a card 

Transaction type NO  

Transaction category YES credit/debit 

Originator’s data 
NO In case of transactions originated by people other than the 

account holder, name and address 

Sender’s account number NO  

Sender's virtual account 
number 

NO 
IBAN format 

BIC/SWIFT of the sender's Bank NO For foreign transfers only 

Name of the sender's Bank NO For foreign transfers only 

Code of the sender’s Bank NO For foreign transfers only 

Code of the sender’s country NO For foreign transfers only 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 28 / 100 

Address of the sender’s bank NO For foreign transfers only 

Sender's data NO Name and address 

Payee’s account number NO  

Payee's account virtual number NO IBAN format 

BIC/SWIFT of the payee’s bank NO For foreign transfers only 

Name of the payee’s bank NO For foreign transfers only 

Code of the payee’s bank NO For foreign transfers only 

Code of the payee’s country 
NO For foreign transfers only 

Address of the payee's bank NO For foreign transfers only 

Payee’s data NO Name and address 

 
/getTransactionsRejected 
 

FIELD NAME REQUIRED COMMENT 
Element ID YES Transaction or hold ID assigned by the ASPSP 

The transaction amount YES  

Currency of transaction NO ISO code of the transaction currency 

Transaction title YES  

Operation Date NO  

MCC code 
NO Merchant Category Code for each transaction/operation 

made using a card 

Transaction type NO  

Transaction category YES credit/debit 

Originator’s data 
NO In case of transactions originated by people other than the 

account holder, name and address 

Sender’s account number NO  

Sender's virtual account 
number 

NO 
IBAN format 

BIC/SWIFT of the sender's Bank NO For foreign transfers only 

Name of the sender's Bank NO For foreign transfers only 

Code of the sender’s Bank NO For foreign transfers only 

Code of the sender’s country NO For foreign transfers only 

Address of the sender’s bank NO For foreign transfers only 

Sender's data NO Name and address 

Payee’s account number NO  

Payee's account virtual number NO IBAN format 

BIC/SWIFT of the payee’s bank NO For foreign transfers only 

Name of the payee’s bank NO For foreign transfers only 

Code of the payee’s bank NO For foreign transfers only 

Code of the payee’s country 
NO For foreign transfers only 

Address of the payee's bank NO For foreign transfers only 

Payee’s data NO Name and address 

Reason for rejection NO  

Rejection date NO  

 
/getTransactionsCancelled 
 

FIELD NAME REQUIRED COMMENT 
Element ID YES Transaction or hold ID assigned by the ASPSP 

The transaction amount YES  

Currency of transaction NO ISO code of the transaction currency 

Transaction title YES  

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 29 / 100 

Operation Date NO  

MCC code 
NO Merchant Category Code for each transaction/operation 

made using a card 

Transaction type NO  

Transaction category YES credit/debit 

Transaction status NO Dictionary value 

Originator’s data 
NO In case of transactions originated by people other than the 

account holder, name and address 

Sender’s account number NO  

Sender's virtual account 
number 

NO 
IBAN format 

BIC/SWIFT of the sender's Bank NO For foreign transfers only 

Name of the sender's Bank NO For foreign transfers only 

Code of the sender’s Bank NO For foreign transfers only 

Code of the sender’s country NO For foreign transfers only 

Address of the sender’s bank NO For foreign transfers only 

Sender's data NO Name and address 

Payee’s account number NO  

Payee's account virtual number NO IBAN format 

BIC/SWIFT of the payee’s bank NO For foreign transfers only 

Name of the payee’s bank NO For foreign transfers only 

Code of the payee’s bank NO For foreign transfers only 

Code of the payee’s country 
NO For foreign transfers only 

Address of the payee's bank NO For foreign transfers only 

Payee’s data NO Name and address 

 
/getTransactionsScheduled 
 

FIELD NAME REQUIRED COMMENT 
Element ID YES Transaction or hold ID assigned by the ASPSP 

The transaction amount YES  

Currency of transaction NO ISO code of the transaction currency 

Transaction title YES  

Operation Date NO  

MCC code 
NO Merchant Category Code for each transaction/operation 

made using a card 

Transaction type NO  

Transaction category YES credit/debit 

Transaction status NO Dictionary value 

Originator’s data 
NO In case of transactions originated by people other than the 

account holder, name and address 

Sender’s account number NO  

Sender's virtual account 
number 

NO 
IBAN format 

BIC/SWIFT of the sender's Bank NO For foreign transfers only 

Name of the sender's Bank NO For foreign transfers only 

Code of the sender’s Bank NO For foreign transfers only 

Code of the sender’s country NO For foreign transfers only 

Address of the sender’s bank NO For foreign transfers only 

Sender's data NO Name and address 

Payee’s account number NO  

Payee's account virtual number NO IBAN format 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 30 / 100 

BIC/SWIFT of the payee’s bank NO For foreign transfers only 

Name of the payee’s bank NO For foreign transfers only 

Code of the payee’s bank NO For foreign transfers only 

Code of the payee’s country 
NO For foreign transfers only 

Address of the payee's bank NO For foreign transfers only 

Payee’s data NO Name and address 

 
/getHolds 
 

FIELD NAME REQUIRED COMMENT 
Element ID YES holds, ASPSP-assigned 

Hold amount YES  

Currency NO ISO Currency Code 

Transaction title YES  

Operation Date NO  

MCC code 
NO Merchant Category Code for each transaction/operation 

made using a card 

Transaction type NO credit/debit 

Hold end date NO  

Originator’s data 
NO In case of transactions originated by people other than the 

account holder, name and address 

Sender’s account number NO  

Sender's virtual account 
number 

NO 
IBAN format 

BIC/SWIFT of the sender's Bank NO For foreign transfers only 

Name of the sender's Bank NO For foreign transfers only 

Code of the sender’s Bank NO For foreign transfers only 

Code of the sender’s country NO For foreign transfers only 

Address of the sender’s bank NO For foreign transfers only 

Sender's data NO Name and address 

Payee’s account number NO  

Payee's account virtual number NO IBAN format 

BIC/SWIFT of the payee’s bank NO For foreign transfers only 

Name of the payee’s bank NO For foreign transfers only 

Code of the payee’s bank 
NO For foreign transfers only 

Code of the payee’s country NO For foreign transfers only 

Address of the payee's bank NO For foreign transfers only 

Payee’s data NO Name and address 

 
/getTransactionDetail 
 
FIELD NAME REQUIRED COMMENT 

Element ID YES Transaction or hold ID assigned by the ASPSP 

The transaction amount YES  

Currency of transaction NO ISO code of the transaction currency 

Transaction title YES  

Operation Date NO  

MCC code 
NO Merchant Category Code for each transaction/operation 

made using a card 

Transaction type NO  

Transaction category YES credit/debit 

Transaction status NO Dictionary value 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 31 / 100 

Originator’s data 
NO In case of transactions originated by people other than the 

account holder, name and address 

Sender’s account number NO  

Sender's virtual account 
number 

NO 
IBAN format 

BIC/SWIFT of the sender's Bank NO For foreign transfers only 

Name of the sender's Bank NO For foreign transfers only 

Code of the sender’s Bank NO For foreign transfers only 

Code of the sender’s country NO For foreign transfers only 

Address of the sender’s Bank  For foreign transfers only 

Sender's data NO Name and address 

Payee’s account number NO  

Payee's account virtual number NO IBAN format 

BIC/SWIFT of the payee’s bank NO For foreign transfers only 

Name of the payee’s bank NO For foreign transfers only 

Code of the payee’s bank NO For foreign transfers only 

Code of the payee’s country NO For foreign transfers only 

Address of the payee's bank NO For foreign transfers only 

Payee’s data NO Name and address 

Book date NO  

Balance NO Account balance after the transaction 

Element ID YES holds, ASPSP-assigned 

Tax ID number NO Payer's basic identifier with the Social Insurance Institution 
(ZUS), i.e. NIP. 

Payer's additional identification 
number  

NO Value of the payer’s additional identifier with the Social 
Insurance Institution (ZUS) (the value appropriate to the type 
of payer's additional identifier selected in the ‘Type of payer's 
additional identifier’ field) 

Type of payer’s additional 
identifier  

NO Dictionary value defining the type of the payer’s additional 
identifier with the Social Insurance Institution (ZUS). 

Payment type  NO Only for transfers to the Social Insurance Institution (ZUS) 

Declaration number NO Value of declaration number for transfers to the Social 
Insurance Institution (ZUS) compliant with the form of this 
type of transfers 

Declaration period NO Value of declaration period for transfers to the Social 
Insurance Institution (ZUS) compliant with the form of this 
type of transfers 

Payment type ID  NO Value of ID of the liability to be transferred to the Social 
Insurance Institution (ZUS) compliant with the form of this 
type of transfers 

Number of the executive title NO Value of declaration number for transfers to the Social 
Insurance Institution (ZUS) compliant with the form of this 
type of transfers 

Payer's ID YES Only for transfers to tax authorities / customs authorities in 
Poland 

Payer’s ID type YES Only for transfers to tax authorities / customs authorities in 
Poland 

Symbol of the tax or customs 
form 

YES Only for transfers to tax authorities / customs authorities in 
Poland 

Period number CONDITIONALLY Required conditionally - depending on the value of the 
parameter in the Form symbol field. Only for transfers to tax 
authorities / customs authorities in Poland. 

Period type  CONDITIONALLY Required conditionally - depending on the value of the 
parameter in the Form symbol field. Only for transfers to tax 
authorities / customs authorities in Poland. 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 32 / 100 

Period year CONDITIONALLY Required conditionally - depending on the value of the 
parameter in the Form symbol field. Only for transfers to tax 
authorities / customs authorities in Poland. 

ID of the liability under which 
the tax is due, e.g. decision, 
executive title, ruling 

NO 
Only for transfers to tax authorities / customs authorities in 
Poland 

Card holder  NO  

Card number NO  

Exchange rate date NO  

Currency conversion rates  NO  

Currency code before the 
conversion transaction 

NO 
ISO code 

Currency code after the 
conversion transaction 

NO 
 

Currency of original transaction NO ISO code 

Amount in original currency NO  

Unique ID of the payment 
instrument by which the 
transaction was effected 

NO 
 

TPP-side unique transaction ID NO In case of transactions initiated as part of the PIS service 

TPP’s name NO In case of transactions initiated as part of the PIS service 

Reason for Rejection NO In case of rejected transactions 

Hold end date NO In case of account holds 

Is payment using the Split 
Payment mechanism 

No Value determining whether the transfer is initiated using the 
Split Payment mechanism. The default value is false 

Invoice number Conditionally Invoice number that the transfer relates to. Required when 
the Split Payment mechanism is used. 

Transfer recipient's ID Conditionally For example, tax identification number. Required when the 
Split Payment mechanism is used. 

VAT amount Conditionally Required when the Split Payment mechanism is used. 

Additional description No  

The fields described in the table above become mandatory for ASPSPs in relation to the scope of 
information about payment accounts and transactions the given ASPSP makes available in its online 
interface, save exceptions stipulated in the law (e.g. with regard to particularly protected data 
concerning payments or personal data). To the scope of data concerning the account and transactions, 
each ASPSP may add additional fields, taking advantage for this purpose of the auxData type Map field 
within the AccountInfo, TransactionInfo, HoldInfo, TransactionPendingInfo and 
TransactionRejectedInfo structures. 
 
 
The list of fields made available when the ASPSP allows the use of the account list retrieval within the 
process of granting consent for the AIS or PIS services.  
 
/getAccounts 
 

FIELD NAME REQUIRED COMMENT 
Account number Yes Account number in a masked form, only the 2 first and 

last 4 digits of the account number visible without 
masking, according to the ASPSP’s decision. In case of 
account number masking, the ASPSP should ensure a 
number decrypting mechanism to enable the 
performance of the AIS service.   

Account type name Yes Product's commercial name 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 33 / 100 

(defined by the Bank) 

Account type Yes E.g. account for the consumer / business account + 
product reference, e.g. account, credit card, savings 
account, etc. 

Type of relation between PSU 
and an Account 

YES Dictionary value 

Type of relation between PSU 
and an Account 

NO Dictionary value 

3.2.5 Diagrams of Requests under the AIS Service within the Compliance Scope 

The diagrams have been presented in Use Case #2 in Chapter 4. 

3.3 Business Definition of the Compliance Scope for the CAF Service 

The service of confirmation of funds at the payer’s payment account in an amount sufficient to effect 
the payment transaction within the Compliance Scope consists in sending a request by the TPP acting 
as a PIISP to the ASPSP for a confirmation whether or not the PSU’s payment account has funds in the 
amount as determined in the request on the basis of consent granted earlier by the PSU. In response, 
the ASPSP sends a message in the form of ‘YES’ or ‘NO’. 

3.3.1 List of Fields Required by the ASPSP in the Compliance Scope 

In order to support a request concerning a conformation of funds at the payer’s payment account in 
an amount sufficient to effect a CAF payment transaction within the Compliance Scope correctly, the 
ASPSP may request from the PSU, via the TPP (PIISP), that the following fields be completed with 
transaction order data. 

 

FIELD NAME REQUIRED COMMENTS 

Identifier of account the 
request concerns 

Yes 
Account previously connected with the payment 
instrument on the basis of consent granted by the PSU. 

Amount Yes 
 

Currency Yes Currency of transaction 

3.3.2 Diagrams of Requests under the CAF Service within the Compliance Scope 

The diagram was presented in Use Case #3 in Chapter 4. 

  

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 34 / 100 

4 Sample Use Cases 

The current PolishAPI standard version described the manner of performance of XS2A interface-based 
transactions within the Compliance Scope as defined in Chapter 3 hereof and the TPP may participate 
in such transactions in one of the roles defined. 

Examples illustrating the use of particular services were presented in this chapter. Their aim is only to 
illustrate the steps for particular services and should not be treated as an exhaustive list of admissible 
use cases. 

4.1 Use Case #1: payment initiation by the PISP (PIS) 

The use of a PIS service within the Compliance Scope as presented in this Use Case consists in the 
initiation by the TPP acting as a PISP of a payment transaction debited to the PSU’s payment account 
held by the ASPSP on the basis of applicable provisions of the Payment Services Act. The ASPSP may 
reject the transaction if the TPP (PISP) has not been identified as an entity authorised to effect a PIS 
service. 

4.1.1 Consent granting and payment initiation performance (single payment 
with a current or future date, recurring payments, multiple payments – 
transfer batch) – ASPSP-side authentication 

• 001 / PSU initiates the process in the TPP’s interface 

• 002 / TPP displays the list of ASPSPs 

• 003 / PSU selects an ASPSP from the list and grants a consent to TPP to provide the PIS service, 

including a consent for the initiation of a transfer, a recurring transfer or a batch of transfers, 

and a consent for a query about the current status of a transfer, a recurring transfer or a batch 

of transfers, after they have been initiated 

• 004 / PSU completes the transfer, recurring transfer or multi-transfer form meeting the 

requirements described in Chapter 3.1.1 and containing at least the information indicated in 

Chapter 3.1.4 of this specification: ‘List of Fields Required by the ASPSP in the Compliance 

Scope’ – depending on the option and with or without the account number 

• 005 / TPP initiates the PIS process (use of the method /authorize, including the provision of 

scope and scope_details), then there is a redirection to the ASPSP’s domain in order to 

authenticate the PSU 

• 006 / ASPSP verifies the TPP’s identify on the basis of a certificate (or also on the basis of the 

register of TPPs) 

• 007 / ASPSP sends an authentication request to the PSU 

• 008 / Authentication (SCA, if required) 

• 009 and 009A / ASPSP displays to the PSU the transaction details and the account list (in the 

ASPSP-side account selection option), PSU indicates the account from which the payment will 

be initiated 

• 010 / ASPSP generates and sends to the PSU an additional authorization element (e.g. OTP) – 

provided that it is required in accordance with the regulations in force 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 35 / 100 

• 011 / PSU authorises the transaction using the method applied in relations with the ASPSP (the 

PSU has an option to refuse authorisation, which results in the fact that the payment 

transaction is not effected). After a successful authorization of a transfer, a recurring transfer 

or a batch of transfers by the PSU, there is an establishment of the XS2A interface session 

between the ASPSP and TPP, in consequence of which the ASPSP provides an access token and 

a refresh token to the TPP (use of the method /token and, after the XS2A session 

establishment, one of the following methods: /domestic, /tax, /EEA, /nonEEA, 

/bundle/recurring)  

• 012 / ASPSP performs the request and then a redirection is made to the TPP’s domain 

 the payment initiation process is terminated  

 

 

Figure 5: PIS – ASPSP-side authentication 

4.1.2 Consent granting and payment initiation performance (single payment with 
a current or future date, recurring payments, multiple payments – transfer 
batch) – Authentication in an external authorization tool  

• 001 / PSU initiates the process in the TPP’s interface 

• 002 / TPP displays the list of ASPSPs 

• 003 / PSU selects an ASPSP from the list and grants a consent to TPP to provide the PIS service, 

including a consent for the initiation of a transfer, a recurring transfer or a batch of transfers, 

and a consent for a query about the current status transfer or a batch of transfers, after they 

have been initiated 

• 004 / PSU completes the transfer, recurring transfer or multi-transfer form meeting the 

requirements described in Chapter 3.1.1 and containing at least the information indicated in 

Chapter 3.1.4 of this specification: ‘List of Fields Required by the ASPSP in the Compliance 

Scope’ – together with an account number 

• 005 / TPP initiates the PIS process (use of the method /authorizeExt, including the provision of 

scope and scope_details) 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 36 / 100 

• 006 / ASPSP verifies the TPP’s identify on the basis of a certificate (or also on the basis of the 

register of TPPs) 

• 007 / ASPSP initiates the process of PSU’s authentication, including provides to the EAT an 

instruction concerning the use of the 2nd authorisation element – if this is required as per the 

regulations in force  

• 008 / Authentication (SCA, if required) 

• 009 / The external authorization tool displays the payment details and the PSU accepts the 

transaction 

• 010 / PSU authorises the transaction (PSU has an option to refuse authorisation, which results 

in the fact that the payment transaction is not effected). After a successful authorization of a 

transfer, a recurring transfer or a batch of transfers by the PSU, there is an establishment of 

the XS2A interface session between the ASPSP and TPP, in consequence of which the ASPSP 

provides an access token and a refresh token to the TPP (use of the method /token and, after 

the XS2A session establishment, one of the following methods: /domestic, /tax, /EEA, 

/nonEEA, /bundle/recurring)  

• 011 / ASPSP performs the request and then a redirection is made to the TPP’s domain 

 the payment initiation process is terminated  

 

 

Figure 6: PIS – authentication in an external authorization tool 

4.1.3 Payment status request (single payment with a current or future date, 
recurring payment, multiple payment – transfer batch)  

• 001 / TPP sends a new access token issue request (new communication session establishment 

as per the description in 11.3), on the basis of the refresh token value obtained in step 011 

(ASPSP-side authentication) or 010 (authentication in an external authorization tool), and a 

new scope of consents, which comprises a possibility to request the status of a transfer or a 

batch of transfers 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 37 / 100 

• 002 / ASPSP verifies the TPP’s request, in particular the refresh token value submitted and the 

data describing the consent requested, whereby a new XS2A interface communications 

session is established and new access token and refresh token values, which identify the 

session, are sent to the TPP 

• 003 / TPP sends the PIS request concerning the retrieval of the status of a transfer, a recurring 

transfer or a batch of transfers, using the above-mentioned access token  

• 004 / ASPSP performs the request 

 the payment status request process is terminated  

• 001 / ASPSP sends the payment status asynchronously  

 the payment status provision process is terminated  

 

Figure 7: PIS – status request 

4.1.4 Payment cancellation (single payment with a future date, recurring 
payment with a future date, single payment as part of a multiple payment 
(with a future date) or a multiple payment – a batch of transfers) – ASPSP-
side authentication 

• 001 / PSU initiates the process in the TPP’s interface 

• 002 / TPP displays the list of ASPSPs 

• 003 / PSU selects an ASPSP from the list  

• 004 / PSU selects the payment, a definition of a recurring payment or a batch to be cancelled 

• 005 / TPP initiates the cancellation process (use of the method /authorize, including the 

provision of scope and scope_details) 

• 006 / ASPSP verifies the TPP’s identify on the basis of a certificate (or also on the basis of the 

register of TPPs) 

• 007 / ASPSP initiates the process of PSU’s authentication 

• 008 / Authentication 

• 009 / ASPSP displays details of the payment cancelled to the PSU  

• 010 / ASPSP generates and delivers to the PSU an additional authorization element (e.g. OTP)  

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 38 / 100 

• 011 / PSU authorizes the payment cancellation as per the method used in relations with the 

ASPSP. After a successful authorization of a cancellation, there is an establishment of the XS2A 

interface session between the ASPSP and TPP, in consequence of which the ASPSP provides an 

access token to the TPP (use of the method /token and, after the XS2A session establishment, 

the method / cancelPayments or /cancelReccurringPayment 

• 012 / ASPSP performs the request and then a redirection is made to the TPP’s domain 

 the payment /batch cancellation process is terminated  

 

Figure 8: PIS – payment cancellation – ASPSP-side authentication 

4.1.5 Payment cancellation (single payment with a future date, recurring 
payment with a future date, single payment as part of a multiple payment 
(with a future date) or a multiple payment – a batch of transfers) – 
authentication in an external authorization tool 

• 001 / PSU initiates the process in the TPP’s interface 

• 002 / TPP displays the list of ASPSPs 

• 003 / PSU selects an ASPSP from the list  

• 004 / PSU selects the payment, a definition of a recurring payment or a batch to be cancelled 

• 005 / TPP initiates the cancellation process (use of the method /authorizeExt, including the 

provision of scope and scope_details) 

• 006 / ASPSP verifies the TPP’s identify on the basis of a certificate (or also on the basis of the 

register of TPPs) 

• 007 / ASPSP initiates the process of PSU’s authentication, including provides to the EAT an 

instruction concerning the use of the 2nd authorisation element 

• 008 / Authentication 

• 009 / EAT displays details of the payment cancelled to the PSU  

• 010 / PSU authorizes the payment cancellation as per the method used in relations with the 

ASPSP. After a successful authorization of a cancellation, there is an establishment of the XS2A 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 39 / 100 

interface session between the ASPSP and TPP, in consequence of which the ASPSP provides an 

access token to the TPP (use of the method /token and, after the XS2A session establishment, 

the method / cancelPayments or /cancelRecurringPayment 

• 011 / ASPSP performs the request 

 the payment /batch cancellation process is terminated  

 

Figure 9: PIS – payment cancellation – authentication in an external authorization tool 

 

4.2 Use Case #2: payment account information display by the AISP (AIS) 

The use of an AIS service within the Compliance Scope as presented in this Use Case consists in the 
acquisition by the TPP acting as an AISP of information about the PSU’s payment account held by the 
ASPSP on the basis of applicable provisions of the Payment Services Act. 

 

4.2.1 Consent granting and account information taking with a manual insertion 
of the account number (ASPSP-side authentication)  

• 001 / PSU initiates the process in the TPP’s interface 

• 002 / TPP displays the list of ASPSPs 

• 003 / PSU selects an ASPSP from the list and grants a consent to the given TPP to provide the 

account information service concerning an account maintained by the given ASPSP 

• 004 / PSU inserts the account number and defines the scope of access 

• 005 / TPP initiates the AIS process (use of the method /authorize, including the provision of 

scope and scope_details), then there is a redirection to the ASPSP’s domain in order to 

authenticate the PSU 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 40 / 100 

• 006 / ASPSP verifies the TPP’s identify on the basis of a certificate (or also on the basis of the 

register of TPPs) 

• 007 / ASPSP sends an authentication request to the PSU 

• 008 / SCA authentication. After a successful authentication by the PSU, there is an 

establishment of the XS2A interface session between the ASPSP and TPP, in consequence of 

which the ASPSP provides an access token and a refresh token to the TPP (use of the method 

/token and, after the XS2A session establishment, one of the following methods: /getAccount, 

/getTransactionsDone, /getTransactionsPending, /getTransactionsRejected, 

/getTransactionsCancelled, /getTransactionsScheduled, /getHolds, /getTransactionDetail)  

• 009 / ASPSP performs the request and then a redirection is made to the TPP’s domain 

          the account information taking process is terminated 

 

Figure 10: AIS – manual insertion of the account number – ASPSP-side authentication 

4.2.2 Consent granting and account information taking with a manual insertion 
of the account number– authentication in an external authorization tool  

• 001 / PSU initiates the process in the TPP’s interface 

• 002 / TPP displays the list of ASPSPs 

• 003 / PSU selects an ASPSP from the list and grants a consent to the given TPP to provide the 

account information service concerning an account maintained by the given ASPSP 

• 004 / PSU inserts the account number and defines the scope of access 

• 005 / TPP initiates the AIS process (use of the method /authorizeExt, including the provision of 

scope and scope_details) 

• 006 / ASPSP verifies the TPP’s identify on the basis of a certificate (or also on the basis of the 

register of TPPs) 

• 007 / ASPSP initiates the process of PSU’s authentication 

• 008 / SCA authentication. After a successful authentication by the PSU, there is an 

establishment of the XS2A interface session between the ASPSP and TPP, in consequence of 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 41 / 100 

which the ASPSP provides an access token and a refresh token to the TPP (use of the method 

/token and, after the XS2A session establishment, one of the following methods: /getAccount, 

/getTransactionsDone, /getTransactionsPending, /getTransactionsRejected, 

/getTransactionsCancelled, /getTransactionsScheduled, /getHolds, /getTransactionDetail)  

• 009 / ASPSP performs the request 

          the account information taking process is terminated 

 

Figure 11: AIS – manual insertion of the account number– authentication in an external authorization tool 

4.2.3 Consent granting and account information taking with ASPSP-side account 
selection – ASPSP-side authentication  

• 001 / PSU initiates the process in the TPP’s interface 

• 002 / TPP displays the list of ASPSPs 

• 003 / PSU selects an ASPSP from the list and grants a consent to the given TPP to provide the 

account information service concerning an account maintained by the given ASPSP 

• 004 / TPP initiates the AIS process (use of the method /authorize, including the provision of 

scope and scope_details) 

• 005 / ASPSP verifies the TPP’s identify on the basis of a certificate (or also on the basis of the 

register of TPPs) 

• 006 / ASPSP sends an authentication request to the PSU 

• 007 / SCA authentication  

• 008 / ASPSP displays a list of accounts 

• 009 / PSU indicates an account (accounts), in the context of which it wants to obtain 

information. After a successful authentication and account indication by the PSU, there is an 

establishment of the XS2A interface session between the ASPSP and TPP, in consequence of 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 42 / 100 

which the ASPSP provides an access token and a refresh token to the TPP (use of the method 

/token and, after the XS2A session establishment, the method /getAccounts) 

• 010 / ASPSP performs the request, taking into consideration the step 009 indications 

• 011 / TPP displays a list of indicated accounts 

• 012 / PSU determines the access parameters for the accounts indicated, TPP calls the 

method /token with the use of the method exchange_token, in consequence of which the 

ASPSP provides to the TPP a new access token and a new refresh token, and then one of the 

following methods is called: : /getAccount, /getTransactionsDone, /getTransactionsPending, 

/getTransactionsRejected, /getTransactionsCancelled, /getTransactionsScheduled, /getHolds, 

/getTransactionDetail 

• 013 / ASPSP performs the request 

          the account information taking process is terminated 

 

Figure 12: PIS – ASPSP-side account selection – ASPSP-side authentication 

4.2.4 Consent granting and account information taking with an account list 
retrieval – ASPSP-side authentication 

• 001 / PSU initiates the process in the TPP’s interface 

• 002 / TPP displays the list of ASPSPs 

• 003 / PSU selects an ASPSP from the list and grants a consent to the given TPP to provide the 

account information service concerning an account maintained by the given ASPSP 

• 004 / TPP initiates the AIS process (use of the method /authorize, including the provision of 

scope and scope_details) 

• 005 / ASPSP verifies the TPP’s identify on the basis of a certificate (or also on the basis of the 

register of TPPs) 

• 006 / ASPSP sends an authentication request to the PSU 

• 007 / SCA authentication. After a successful authentication and account indication by the PSU, 

there is an establishment of the XS2A interface session between the ASPSP and TPP, in 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 43 / 100 

consequence of which the ASPSP provides an access token and a refresh token to the TPP (use 

of the method /token and, after the XS2A session establishment, the method /getAccounts) 

• 008 / ASPSP performs the request 

• 009 / TPP displays a list of accounts 

• 010 / PSU determines the access parameters for the accounts indicated, TPP calls the method 

/token with the use of the method exchange_token, in consequence of which the ASPSP 

provides to the TPP a new access token and a new refresh token, and then one of the following 

methods is called: /getAccount, /getTransactionsDone, /getTransactionsPending, 

/getTransactionsRejected, /getTransactionsCancelled, /getTransactionsScheduled, /getHolds, 

/getTransactionDetail 

• 011 / ASPSP performs the request 

          the account information taking process is terminated 

 

Figure 13: AIS – account list retrieval – ASPSP-side authentication 

4.2.5 Consent granting and account information taking with an account list 
retrieval – authentication in an external authorization tool  

• 001 / PSU initiates the process in the TPP’s interface 

• 002 / TPP displays the list of ASPSPs 

• 003 / PSU selects an ASPSP from the list and grants a consent to the given TPP to provide the 

account information service concerning an account maintained by the given ASPSP 

• 004 / TPP initiates the AIS process (use of the method /authorizeExt, including the provision of 

scope and scope_details) 

• 005 / ASPSP verifies the TPP’s identify on the basis of a certificate (or also on the basis of the 

register of TPPs) 

• 006 / ASPSP initiates the process of PSU’s authentication 

• 007 / SCA authentication. After a successful authentication and account indication by the PSU, 

there is an establishment of the XS2A interface session between the ASPSP and TPP, in 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 44 / 100 

consequence of which the ASPSP provides an access token and a refresh token to the TPP (use 

of the method /token and, after the XS2A session establishment, the method /getAccounts) 

• 008 / ASPSP performs the request 

• 009 / TPP displays a list of accounts 

• 010 / PSU determines the access parameters for the accounts indicated, TPP calls the method 

/token with the use of the method exchange_token, in consequence of which the ASPSP 

provides to the TPP a new access token and a new refresh token, and then one of the following 

methods is called: /getAccount, /getTransactionsDone, /getTransactionsPending, 

/getTransactionsRejected, /getTransactionsCancelled, /getTransactionsScheduled, /getHolds, 

/getTransactionDetail 

• 011 / ASPSP performs the request 

          the account information taking process is terminated 

 

Figure 14: AIS – account list retrieval – authentication in an external authorization tool 

4.2.6 Account information retrieval without PSU’s participation  

• 001 / TPP sends the request to issue a new token based on a refresh token 

• 002 / ASPSP verifies the TPP’s identify on the basis of a certificate (or also on the basis of the 

register of TPPs). After a positive verification between the ASPSP and the TPP, an XS2A 

interface session is established, in consequence of which ASPSP sends to the TPP an access 

token based on a refresh token 

• 003 / TPP calls one of the following methods: /getAccount, /getTransactionsDone, 

/getTransactionsPending, /getTransactionsRejected, /getTransactionsCancelled, 

/getTransactionsScheduled, /getHolds, /getTransactionDetail 

• 004 / ASPSP performs the request 

          the account information taking process is terminated 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 45 / 100 

 

Figure 15: AIS – Account information retrieval without PSU’s participation 

4.2.7 Withdrawal of consent  

• 001 / PSU initiates the process in the TPP’s interface 

• 002 / TPP displays a list of consents 

• 003 / PSU selects a specific consent from the list of consents within the framework of which 

the changes will be made 

• 004 / PSU withdraws the consent for the AIS service 

• 005 / TPP sends a token revocation request to the ASPSP (use of the method /deleteConsent) 

consent withdrawal process is terminated 

 

Figure 16: AIS – consent withdrawal 

4.3 Use Case #3: request for confirmation of funds by a PIISP (CAF) 

The use of an CAF service within the Compliance Scope as presented in this Use Case consists in the 
initiation by the TPP acting as an PIISP of a request for availability of funds in the transaction amount 
at the PSU’s payment account on the basis of applicable provisions of the Payment Services Act. 

The PSU must previously indicate to the PIISP a payment account that will be verified in each case in 
terms of funds availability and grants his/her consent for the ASPSP holding the given payment account 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 46 / 100 

to answer such requests. The PSU initiates a business process requiring a verification whether or not 
the payment account previously indicated by the PSU has funds available in the amount equal at least 
to the requested amount. In order to effect the service, the PIISP establishes an XS2A session with 
ASPSP, sends a request and receives a ‘YES’ or ‘NO’ answer. 

This process has been presented at a high level in the diagram below. 

 

Figure 17: CAF – request for confirmation of funds 

 
• 001/ Transaction initiation using a payment instrument 

• 002 / TPP calls the method /getConfiramtionOfFunds 

• 003 / ASPSP verifies the TPP’s identify on the basis of a certificate (or also on the basis of the 

register of TPPs).  

• 004 / ASPSP verifies the consent for the service on its side, after a positive verification, the 

request is performed 

          the confirmation of funds request process is terminated  

 

 

  

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 47 / 100 

5 Polish API Technical Specification 

5.1 Technical Assumptions 

The table below presents the technical assumptions made for the PolishAPI: 

No. ASSUMPTION DESCRIPTION GROUNDS 
1 Direct TPP-ASPSP 

communication 
In the basic variant of the 
PolishAPI, the TPP and the ASPSP 
communicate with each other 
directly.  

The peer-to-peer architecture used 
increases the safety and efficiency as 
well as allows the avoidance of a 
single point of failure. 

2 Role of the PSD2 HUB In case the ASPSP uses the 
services of a PSD2 HUB, it is 
neutral for the TPP. The PSD2 HUB 
presents itself using the ASPSP’s 
certificate, from the TPP’s 
perspective, there is no difference 
whether it gets connected with 
the PSD2 HUB or directly with the 
ASPSP. 

Efficient and Safe API and PolishAPI 
Standard Implementation. 

3 The TPP-ASPSP 
communication is a 
server-server one 

No direct communication of the 
client's device (e.g. a mobile app) 
with the ASPSP’s PolishAPI servers 
is allowed. The TPP should be 
legally obliged to secure the 
access keys (so-called access 
certificate). In particular, the 
access certificates may not be 
installed in mobile apps made 
available to the PSUs) 

 

4 Separation of the client’s 
consent step from the 
operation performance 
step 

The client's consent for the 
service performance will be 
separated from the performance 
of the operation itself. One of the 
effects will be the fact that the 
consent in itself will not entail any 
financial consequences. 

Flexibility in the implementation of 
new services, including the Premium 
Services. 

5 Scope of the PolishAPI The scope of PolishAPI specifies 
the following: 
- way of granting consent for the 

performance by the TPP of an 
operation on behalf of the 
customer 

- scope of operations and rights 
- URL where the given service is 

available 
- standard scope of parameters 

per service 
- security mechanisms 
- communication principles 
- error handling 
The PolishAPI does not specify the 
following: 
- full scope of functionalities to 

be made available by the ASPSP 
as well as the information as to 

The RTS make the scope of 
functionality and the scope of data 
dependent on the scope of 
functionality made available in the 
Internet banking, which is different 
for each ASPSP 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 48 / 100 

which ones of them will not be 
within the Compliance Service 

- full specification of fields per 
service for each ASPSP 

5.2 XS2A Session Establishment 

The use by a TPP of business services (AIS, PIS, CAF), made available at the ASPSP’s side, requires the 
so-called communications session to be started at the side of the technical solutions of the entities 
listed. 

The process of starting a communications session with the XS2A interface comprises the requests and 
responses exchanged between the TPP and ASPSP using the technical services of that interface (AS – 
Authorization Service), in effect of which the communications session is started and the ASPSP’s side 
and its technical representation, including such metadata as its validity date, is sent to the TPP.  

The establishment of a communications session may take into consideration the necessity to ensure a 
strong authentication of the PSU. Considering the SCA method selected (ASPSP-side or decoupled), the 
communications session starting process may vary. Irrespective of the said differences as regards the 
SCA methods, the communications session establishment is based on the OAuth 2.0 standard 
assumptions in the following matters: 

a) The required method of authorisation of access to the ASPSP resources made available via the 
XS2A business interface is the return by the ASPSP-side server, in response to each request 
sent by the TPP, of a one-time authorisation code – within the understanding of Art. 4 of the 
RTSs, which will be used by the TPP in the next step to obtain an access code as per the 
provisions of the OAuth 2.0 standard. 

b) The state parameter sent by the TPP in the authorization request (item a) must be unique for 
each authorization process performed by the given TPP. 

c) It is suggested that the one-time authentication code on the ASPSP's server side and the access 
token were the resource identifier in the database, in which the indicated resource data will 
be used to identify the PSU for whom the access token is generated or the defined business 
operation is effected. 
The use of the so-called stateless token (e.g. JWT Token - RFC 7519) should be resorted to only 
in case when the disclosure of the ASPSP’s customer data (including the ID) is compliant with 
the security policy 

d) Together with the access token, the scope parameter (the same as in the request sent by the 
TPP) is transferred to the TPP. 

The TPP's use of a valid communications session is a pre-condition for the reception of correct 
responses to the requests sent to the XSS2A interface business services. 

The diagram of the XS2A communications session establishment process flow is presented below. 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 49 / 100 

 

Figure 18: Multilayer XS2A session establishment diagram 

 

Each transaction under the XS2A interface business services takes place as part of a dedicated and 
separate communications session, whereby for the selected methods under the AIS and PIS services 
and assuming the fulfilment of the conditions defined in the business and technical parts of the PSD2 
Directive, a multiple use of the same communications session when sending requests to the XS2A 
interface business services, without the need to perform the SCA procedure for the PSU on each 
occasion and while maintaining the validity of the communications session, after which it will be 
automatically cancelled by the ASPSP. 
 

The XS2A interface technical service may offer an alternative and automatic (i.e. not requiring any 

interaction with the PSU) mechanism of starting a communications session, i.e. the refresh token. The 

mechanism allows a refreshment of the communications session previously cancelled by the ASPSP 

without the need to repeat the SCA procedure, based on a separate session identifier (refresh token) 

sent to the TPP in response to the request to start the original communications session.  

5.3 Definition of Access Token 

The access token is a technical representation of the communications session with a defined validity 
that was established by and between the TPP and the ASPSP in the context of a precisely defined PSU 
and for a precisely defined scope of the ASPSP’s side services and resources to which the TPP obtained 
access. The access token is a series of characters the role of which is to confirm the access authorization 
to secured resources made available via the XS2A interface services. The access token may have 
various forms and ways of interpretation. The final properties of the access token depend on the 
ASPSP-side authorization systems which implement the PolishAPI standard. 

Pursuant to the regulations described in the RTSs of the PSD2 Directive, depending on the XS2A 
interface business service (AIS, PIS), for which the communications session was established, the access 
token may be used one time or many times before it is cancelled by the ASPSP, which will entail a 
necessity to re-run the SCA procedure for the PSU, in case of an intention to use the service again. 

5.4 Mutual Authentication of the TPP and the ASPSP 

The mutual authentication of the TPP and the ASPSP takes place on the basis of the X.509v3 certificates 
issued by a trusted third party. A trusted third party may by, in particular, an institution performing 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 50 / 100 

the role of the Identity Hub. It may also be any other party offering a trust-based relationship based 
on public key infrastructure mechanisms. 

All operations consisting in the flows specified and described in the standard are possible only in a 
situation of a correct authentication in a process that comprises a mutual authentication of the server 
and the client (mutual authentication). The TPP and the ASPSP may have the role of both a server and 
a client, but, in each case, it is required that the parties to the communication mutually authenticate 
each other. 

A description of the public key infrastructure used for the needs of authentication of parties (TPP, 
ASPSP, PISP) is not a part of the Polish API standard. It should be described in separate documents 
(working standards), taking into account the structure of trust relation between the certification 
institutions and the interoperability of the Polish API with other solutions of this type in place in other 
countries. 

5.5 Communication Protocol 

HTTP /2 or HTTP 1.1, secured by TLS 1.2+ with a mutual authentication of the client and the server by 

means of the X.509v3 certificates will be used as the communication protocol. Due to the requirement 

to ensure non-repudiation (request and response signing), only the POST method will be used in the 

http communication. 

5.6 Resource Name Diagram 

The PolishAPI services will be made available under addresses compliant with the following model: 

https://{DNS domain}/{v{Resource version number 1}/{Resource name 1}}/.../v{Resource version 
number n}/{Resource name n} 

Field description: 
a) DNS domain/address – where the ASPSP makes the PolishAPI services available (information 

made available in the PSD2 register) 
b) Resource version number – number of the version according to PolishAPI specification (digit 

before the dot separated by the ‘_’ sign) and subsequent interface number within the given 
ASPSP (digit after the dot) 

c) Resource name – number of the resource the request concerns; resources nesting routes, e.g. 
/v{version number of resource accounts}/accounts/v{number version of resource 
transactionsDone}/transactionsDone 

5.7 Versioning 

a) The principle of versioning the API, PolishAPI specification, is based on the Semantic Versioning 
v2.0.0 convention (https://semver.org/). It assumes the use of the version designation using 
three numbers separated by a separator: X_Y_Z. 

b) Each of the following parts separated by a separator is a natural number (e.g. 1_12_1). The 
first segment means the major version, middle - minor, and last - patch. 

c) The major version is used to identify backward or breakthrough incompatible changes to the 
currently published version of the API. 

d) The minor version is used to determine successive API functionalities. According to the naming 
convention, functionalities in the API, for a given version of it, should only grow, unless there 
is a clearly defined change regarding deprecation. Changes made to the minor version should 
not cause incompatibilities. 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 51 / 100 

e) The patch version is intended for use only for security and functionality improvements or bug 
fixes, not causing backward incompatibility or functional increments. 

f) The rule is not to publish simultaneous changes to the functionality extension (minor) and 
error correction (patch). 

g) Minor changes will be introduced no more than twice a year. 
h) In the case of a major change, to ensure compliance with the standard, it should be 

implemented within a maximum of 6 months from the date of publication. 
i) In the case of a minor change, to ensure compliance with the standard, it should be 

implemented within a maximum of 12 months from the date of publication or depending on 
the date of publication of the next major version.   

j) In the case of a major change as referred to in point (h) above and a minor change as referred 
to in point (i) above, the maximum period of introduction of changes referred to applies to 
changes in the test environment (sandbox). Changes in the production environment may be 
introduced later after the interface has been tested by TPP, including in particular the 3-month 
period referred to in art. 30 paragraph 4 RTS. 

5.8 Canonical Data Model 

The detailed description of the data structure is available in the swagger, in section ‘Models’.  

5.9 Operations 

Due to the requirement to ensure non-repudiation in the http communication, only the POST method 
will be used as it allows the JWS Signature format signature. Within the operation, the context of a 
specific user is determined on the basis of an access token. This principle applies both to the requests 
sent by the TPP to the ASPSP’s XS2A interface , as well as requests sent from the ASPSP to the XS2A 
callback interface provided by the TPP. 

5.10 Sorting 

The records returned are sorted chronologically (on a reversed basis) as per the transaction date. 

5.11 Filtering 

Filtering in the AIS service takes place after setting the appropriate properties in the 
TransactionInfoRequest class object: 

a) itemIdFrom – transactions or holds from the given ID ‘chronologically’ 
b) transactionDateFrom – initial transaction date of the data range requested 
c) transactionDateTo – final transaction date of the data range requested 
d) bookingDateFrom – initial booking date of the data range requested 
e) bookingDateTo – final booking date of the data range requested 
f) transactionCategory – CREDIT or DEBIT 
g) minAmount – minimum operation amount within the data range requested 
h) maxAmount – maximum operation amount within the data range requested 

5.12 Paging 

Results of requests containing many records (more than 100) should be paged. Next pages will be 
retrieved by setting the pageId attribute in the data structures responsible for sending the request for 
the account list retrieval and transaction list retrieval.  

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 52 / 100 

In response to the request to retrieve accounts or transactions, a PageInfo structure will be returned 
and it will contain optional parameters called nextPage and previousPage. These parameters, if 
returned, contain identifiers of the previous page and the next page with regard to the page returned 
in the request and, with the exception of this meaning, they are not subject to interpretation by the 
client application (they are any given script interpretable by the API supplier's side in the way that 
allows an identification of the page content, in particular, they may be internally loaded record 
identifiers from one or more systems or a representation of the so-called cursor).  

In order to retrieve a specific page, it is necessary to provide in the next request, in the pageId 
parameter, one of the values obtained in the previous request, in the above-mentioned attributes 
nextPage or previousPage. The pageId attribute may contain only a value that is literally equal to the 
value returned in the nextPage or previousPage parameter of the previous request and is not subject 
to interpretation by the client application (in particular, it is not identical with the consecutive number, 
if the API issuer has not defined a possibility of such an interpretation).  

The number of records per page is defined by means of the perPage attribute in the requests sent. 

In case of use of the pageId parameter containing the value previously returned in nextPage or 
previousPage, the required number of records at the page should have the same value that the one 
use in the request the page identifier used  originates from (additionally, there should be no changes 
to the filtering parameters, e.g.: itemIdFrom, transactionDateFrom, transactionDateTo, 
transactionCategory etc.). API has the right to return the paging error in case of a change in the 
requested page size or parameter paging between the requests, is the request uses the pageId 
parameter. 

An empty value of the pageId parameter or its omission means that a first page retrieval request. 

5.13 Response Statuses 

The technical statuses will be returned by the following http codes: 

 

STATUS DESCRIPTION 
200 OK The operation was successful 

204 No Content The operation was successful. The response does not contain additional 
information. 

400 Bad Request The request is syntactically incorrect 

401 Unauthorized Incorrectly authenticated user 

403 Forbidden Authorisation error (no rights to access the resource) 

405 Method Not Allowed Use of an inappropriate method – the method used in the request is not 
allowed for the resource indicated (Only POST is used) 

406 Not Acceptable Incorrect Accept heading in the request (the server does not support it) 

415 Unsupported Media Type If an incorrect content type was set in the request 

422 Unprocessable Entity Validation error 

429 Too Many Requests Request rejected due to the fact that the maximum number of requests to 
access the resource has been exceeded 

500 Internal Server Error There was an unknown internal error of the API server 

501 Not Implemented XS2A interface doesn’t support given functionality requested by TPP 

503 Service Unavailable The API server is temporarily unavailable 

 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 53 / 100 

5.14 HTTP Header 

The following HTTP headers will be used in the requests: 

HEADER TYPE DESCRIPTION 
Authorization String Authentication header (used when sending a token). The 

value of the Authorization header should comprise the ‘type’ 
+ ‘credentials’, where, in case the ‘type’ token approach is 
applier, the ‘type’ should have the value of ‘Bearer’. 

Date Date Request timestamp in the RFC 5322 date and time format. 

Accept Content type Should be set to application/json Otherwise the application 
should return 406 Not Acceptable HTTP. 

Accept-Encoding Gzip, deflate The operation should support GZIP and DEFLATE coding, it 
may also return non-compressed data. 

Accept-Language ‘pl’, ‘en’, etc. Defined the preferred language in which the response is to be 
returned. The operation does not have to support this header 

Accept-Charset Charset type like ‘UTF-8’ UTF-8 

Content-Type application/json Should be set to application/json. Otherwise, the operation 
returns: 415 Unsupported Media Type HTTP status code 

X-JWS-
SIGNATURE 

String JWS Signature (Detached) 

X-REQUEST-ID String Unique Identifier of the request issued by TPP 

Response headers: 

HEADER REQUIRED DESCRIPTION 
Date Yes Timestamp on the basis of the GMT server time as per RFC 

5322 

Content-Type Yes application/json 

Content-
Encoding 

Yes GZIP or DEFLATE 

Expires No Defines the caching policy for slowly varying objects 
e.g. Expires: Mon, 25 Jun 2012 21:31:12 GMT 

Size Yes Response size in bytes 

ETag No Resource version identifier 

Last-Modified No Last resource modification date 

X-JWS-
SIGNATURE 

Yes JWS Signature (Detached) 
 

5.15 Message format 

The data exchange format will be JSON with the UTF-8 coding. All messages have a defined JSON 
schema draft #4. The parameter names will be saved camelCase. 

5.16 Basic Data Formats 

SIZE JSON FORMAT DESCRIPTION 
Text String Text coded in UTF-8 

Dates String Pursuant to ISO8601.  
Date and time will be represented in the form of YYYY-MM-
DD to YYYY-MM-DDThh:mm:ss.ccczzzzzz with the mandatory 
specification of the time zone 
Designations: 
YYYY – year, MM – month, DD – day, hh – hour, mm – 
minute, ss – second, ccc – millisecond (optional) zzzzzz – e.g. 
+02:00 or Z to denote universal time 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/
https://tools.ietf.org/html/rfc5322#section-3.3
https://tools.ietf.org/html/rfc5322#section-3.3
https://tools.ietf.org/html/rfc5322#section-3.3


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 54 / 100 

For example: 2016-10-10T12:00:05.342+01:00 

Amounts String Written as digits with a sign separating the integer part from 
the fractional part up to the second decimal place (the dot 
sign). In case of positive value, no additional signs are given. 
In case of negative value, the ‘-’ sign is added before the 
number 

Integer Number The integer numbers are represented without group 
separators 

Real number String Real numbers are represented without group separators and 
with the ‘.’ sign as a decimal separator 

Country codes String In accordance with ISO 3166 

Currencies String Currency symbols in accordance with ISO 4217 

Account numbers String IBAN numbers in accordance with ISO 13616 

Bank identifiers String Bank Identifier Codes (BIC) in accordance with ISO 9362 

Logical value Boolean Flags and logical tags which may take one of two values: true 
or false 

 

5.17 Unique Identifier of the request and an algorithm for its generation 

Each request sent by the TPP to the ASPSP -side XS2A interface must contain a unique identifier (a 
parameter called requestId in the header structure sent within the body of each request as well as in 
the HTTP header X-REQUEST-ID). The identifier's uniqueness must be ensured for all the requests sent 
by all the TPPs to the selected ASPSP. 

The requirement that a unique request identifier be sent results from the necessity to verify all the 
requests received by the ASPSP in order to identify and reject the same requests received more than 
once, e.g. in result of a TPP-side error or of recurring and intentional message sending by the TPP in 
case there is no answer from the ASPSP. 

The PolishAPI standard defines the required request identifier format which ensures uniqueness that 
has been defined as above and makes it possible to carry out the ASPSP-side request verification as 
described on a random basis, i.e. taking into account a small subset of earlier request identifiers, which 
will significantly and positively influence the efficiency of such verification and will indirectly ensure a 
faster response from the XS2A interface. 

The required request identifier format is UUID (Universally Unique Identifier), which is a standard 
described in the RFC 4122 document (https://tools.ietf.org/html/rfc4122). Additionally, it is required 
that the request identifier should be generated in variant No. 1 (see 4.1.1 RFC 4122) and in version No. 
1 (see 4.1.3 RFC 4122), which will ensure that the identifier’s value includes a monotonic component 
based on the request sending time and information identifying the request sender (TPP). 

  

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/
https://tools.ietf.org/html/rfc4122
file:///C:/_projects/Polish%20API/spec/see%204.1.1


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 55 / 100 

6 Security of information 

This chapter presents general security requirements vital from the perspective of standard creation 
and its designing on the basis of the IT solution ecosystem compliant with the PolishAPI. Detailed 
security requirements comprising additionally the problems of security of PolishAPI-based system 
implementation, operation and maintenance will be described in a separate document and its 
development will be preceded by a preparation of a detailed risk model. In consequence, they will be 
an answer to specific identified threats, places where the threats may potentially materialise as well 
as the assessment of the level of materiality and probability and impact of the cases when such threats 
should materialise on the safety and operational continuity of the PolishAPI ecosystem. 

Particular PolishAPI-based IT system components should have a clearly defined separation between 
the data layer, the controller’s layer and the presentation layer. The components should be separated 
from each other by a defined security measures such as network segmentation or the firewall rules. 

6.1 TPP’s Authentication 

TPP entities must be properly authenticated before they are granted access to the XS2A interface so 
as to ensure a high level of protection both from an impersonation on the part of unauthorised users 
of lawful TPPs and from an unauthorised escalation of the authorisation level by TPPs having a legal 
access to the  interface. The authentication takes place on the basis of public key certificates during a 
mutual authentication process via the TLS 1.2+ protocol. 

Authentication errors must result on the denial of access to the XS2A interface. 
The user and session authentication data as well as operation authentication tokens may not be 

transferred in the form of URI parameters. 

6.2 TPP’s Authorisation 

The TPP’s authorisation must be based on the RBAC model (Role Based Access Control), where the level 
and scope of access to particular API resources depends on the role of the PolishAPI user. 

The use of particular methods must be authorised so that the rights depended on the user's role. In 
particular, the level and scope of authorisation should be different for TPPs depending on the scope of 
their rights. 

6.3 PSU’s Authorisation for Operations made by a TPP 

Irrespective of the PSU’s authentication mechanism applied within the AIS and PIS services, it is 
assumed that the process will end by the issue by the ASPSP of an access token as defined in Chapter 
5.3 of the specification. The operations are always requested by the TPP via a valid access token. 

6.4 Security in case of Mobile Apps 

For security reasons in a model using the authentication mechanism on the ASPSP’s side, the 
redirection to the ASPSP’s site and back to the TPP’s site will take place in the browser (browsers other 
than the system browse will not be allowed, the application of the WebView will not be allowed) and 
not in the mobile app itself. The TPP may register the appropriate URL in the device's operating system 
so that after the redirection back to the TPP the mobile app be automatically resumed. 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 56 / 100 

6.5 Data Validation and Integrity Assurance 

The data must be subject to validation procedures in the context of variable types, the scope and the 
model of limit values. In particular, the structured JSON data must be parsed in accordance with the 
formal validation procedures, using a white list-based approach. The validation must also be made 
with regard to the Content-type and Accept (application/json) headers for the compliance of the 
header value with the actual text of the HTTP message. 

During the validation, the digital signature in the header (X-JWS-SIGNATURE) must be validated in the 
context of the data provided both in the requests and in the http protocol responses as listed in the 
ASPSP-TPP communication. It should be stressed that this rule applies also in the case of 
communication initiated by the ASPSP side, in case of a use of the XS2A callback interface provided by 
the TPP. 

Input data validation errors must be registered in logs. 

The validation errors must be signalled by the HTTP 400 message (Bad Request) and the data must be 
rejected. This also concerns the negative validation of JWS-SIGNATURE. 

In case of Content-type and Accept text validation errors, http message 406 should be returned (Not 
Acceptable). 

Not validated or incorrectly validated data must be rejected. 

6.6 Cryptography 

The communication using the PolishAPI must ensure a cryptographic security at two levels: 
a) At the level of transmission via (https/TLS). The TLS connection parameter renegotiation must 

be made in a secure way in accordance with RFC 5746 
b) At the message level, in order to ensure the non-repudiation, it is necessary to apply the JSON 

Web Signature as per the RFC 7515 standard (https://tools.ietf.org/html/rfc7515). The 
signature should be included in each request in the X-JWS-SIGNATURE header 

Each party to the communication (TPP, ASPSP) must have its own unique two pairs of keys (for 
transmission and for signature). 

Separate certificates must be used to secure the transaction at the https level and at the JWS-
SIGNATURE level. For https, the certificate must have an expanded key use (Client Authentication) for 
signature (Digital signature). 

The certificates used to combine the transmission and the signature must be validated in terms of: 
a) Validity (certificate validity date from and to) 
b) No cancellation (crl/ocsp) 
c) Path verification (https://tools.ietf.org/html/rfc4158) 

Particularly sensitive information, including identification confirmations and authorization keys, may 
not be buffered or registered in logs. 

Certificates should be issued taking into account the ETSI TS 119 495 specification. 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc4158


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 57 / 100 

6.6.1 Registration of TPP client applications on the ASPSP's side 

The PolishAPI specification, meeting the requirements of the PSD2 directive, defines a dedicated AS 

(Authorization Services) service method called / register, which enables automatic registration of TPP 

client applications that are to gain access to the XS2A interface. 

The registration of the client application is using the RFC 7591 standard 

(https://tools.ietf.org/html/rfc7591), extended with additional information, and thus allows you to 

provide: 

• increased security resulting from the lack of unlimited availability of public keys (significant 

limitation of the possibility of brute force attacks and attacks based on errors in the 

implementation of the JWT / JWS verification process, such as the use of the public key as a 

symmetric key as a result of injecting the "alg" value in JWT) 

• the possibility of using separate keys per TPP and application (exchange of public keys), ensuring 

increased separability of activities 

• the possibility for the TPP to use more than one, separate, client application, or to operate the 

application in various modes, forcing the restriction of permissions per application (not per TPP) - 

e.g. one TPP may have a separate application for initiating payments, different than that created 

by the same TPP application presenting the client's financial status - and these applications will not 

be able to perform activities outside their scope of rights, even though they fall under TPP's rights. 

• providing additional data enabling the TPP to present information about TPP (name, logo, 

description of the subject of activity, links to terms of service etc.) and its application (name, 

description of the application's purpose, logo, URL to download) consistent with the TPP's 

intention e.t.c.) 

• limitation of vulnerabilities associated with redirection to arbitrary addresses, the so-called open 

redirector 

The described mechanism provides for the possibility of transfer between TPP and ASPSP: 

1. Name, description and other information (e.g. logo) to present the application to the user (in the 

context of open banking APIs created for the purposes of the PSD2 Directive - the user is the bank's 

customer - PSU) 

2. Application identification data in API calls, including the authorization API, with particular regard 

to the release of the unique client_id application identifier (and not only - the organization - TPP - 

which allows one TPP to have many client applications with different permissions or operating in 

different "modes"), while support for many applications per TPP remains an ASPSP decision (the 

document assumes that ASPSP may limit the registration option to a single client application per 

TPP) 

3. cryptographic material (keys and certificates) for use in subsequent communication, whereby the 

protocol supports both the possibility of exchanging symmetrical shared keys) and the transfer of 

public keys for verifying signatures and asymmetric encryption, and conducting cryptographic 

proof of possessing the corresponding private keys. 

4. Transfer of client certificates to confirm the identity of the application issuer (along with 

conducting a cryptographic identity card by proof of having a private key corresponding to a 

trusted certificate), and thus its rights arising from regulatory authorization (eIDAS certificates in 

accordance with ETSI TS 119 495 

5. Set forwarding addresses from OAuth2 authorization services 

 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 58 / 100 

The process of self-registration of the client application by TPP 

Support for self-registration of the client application (hereinafter: TPP self-registration) by TPP based 

on the seal certificate is required for PSD2 regulatory scenarios. 

In the PSD2 regulatory scenarios, the required and sufficient condition for registration is the transfer 

of an eIDAS certificate in accordance with ETSI TS 119 495, indicating the given regulatory authorization 

(TPP identifier assigned by the regulator, AISP / PISP / ASPSP roles etc.) and cryptographic proof of its 

ownership (proof of possession of a private key). 

The method of proving of a possesion a private key seal is that the TPP signs the software_statement 

token with that key, and the corresponding certificate must be on the jwks list. 

Content of request and response of the method / register 

The registration request is sent via an encrypted channel (using TLS 1.2 or a newer standard), using the 

HTTP POST method, to the address / register. The content of the request is a JSON document (Content-

type: application / json), in accordance with the requirements of point 3.1.1. RFC 7591 - "Client 

Registration Request Using a Software Statement". It is assumed that all facts included in the request 

should be provided as the content of the signed JWT token being the value of the software_statement 

field. 

The ASPSP may consider facts provided as fields outside the software_statement token (in the fields 

of the main JSON document that are not inside the software_statement content), provided they do 

not conflict with the content software_statement. 

The ASPSP cannot reject a request containing all the data required within software_statement because 

of the value provided outside of this token. 

Registration request fields in the software_statement token 

Fact ID Meaning Required  Comments 

iat The moment of issuing the 

software_statement 

No To prevent re-use of the 

same request, with the right 

of the ASPSP to refuse 

requests after a specified 

period of time 

aud Assumed recipient of the request No / 

Conditionally 

to the decision 

of the ASPSP 

The ASPSP has the right to 

require the issuing of a 

software_statement listing 

the given ASPSP as the 

recipient - an element that 

enhances security by 

preventing the same 

request from being used 

with another provider, and 

ensuring better disconnect. 

iss software_statement issuer ID Yes Example value - ASPSP ID. 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 59 / 100 

iss_name software_statement issuer name No Is a TPP identifier issued by 

the regulator and coded in 

accordance with the 

requirements of ETSI TS 119 

495. 

sub The organization ID requesting 

access to its application. For PSD2 

regulatory scenarios - TPP identifier 

assigned by the regulator 

Not in 

regulatory 

scenarios 

where it can 

be read from 

the certificate 

If provided, it must be the 

same as the identification of 

the organization to which 

the certificate applies 

sub_name Name (full) of the organization 

requesting access for its application - 

the full name of the TPP 

No As long as the given name 

cannot contradict (be 

different) from the name 

given in the certificate 

provided by the 

organization 

sub_descr Description of the organization 

requesting access for its application 

No  

sub_logo The logo URL of the organization 

requesting access for its application 

No  

sub_contact_name Name of contact person No  

sub_contact_email Email to contact person No  

sub_org_number Tax identification number in the 

European registration organization 

format 

No  

sub_country Country of organization registration No  

client_name 

 

The name of the client application No If not specified, the TPP 

name is used (from the 

sub_name or certificate 

field) 

response_types 

 

In accordance with RFC 7591 No Fixed value: "code" 

grant_types 

 

According to RFC 7591, extended to 

"exchange_token" 

No It can take one of the 

following values:  

• authorization_code 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 60 / 100 

• refresh_token 

• exchange_token 

redirect_uris URLs that can be redirected to after 

the call to the / authorize method 

has been completed 

Yes It is assumed that 

redirection to a different 

URL than that indicated in 

this parameter is not 

allowed. 

response_types  No Fixed value: "code" 

jwks A collection of keys (certificates - for 

asymmetric cryptography) that can 

be used by the TPP to sign requests 

(and optionally to establish 

encrypted TLS communication). 

 

Conditionally 

YES (unless 

jwks_uri 

specified) 

It must contain the 

certificate (or url for 

download the certificate) of 

the seal in accordance with 

ETSI TS 119 495, which can 

be used to sign the requests 

sent to the XS2A interface. 

The bank may optionally 

support the handling of 

many certificates per TPP / 

application, in which case it 

may contain more than one 

seal certificate. 

While the TPP intends to 

use the "kid" parameter to 

identify the key used to sign 

API requests, the value of 

this parameter must be 

provided for each key in 

jwks / jwks_uri (kid 

parameter). If the kid 

parameter is not provided, 

it is assumed that the TPP 

will use the unique key 

identifier (fingerprint) in 

requests, it is 

recommended to use x5t # 

256. 

jwks_uri Conditionally 

YES (unless 

jwks specified) 

scope In accordance with RFC 7591 and RFC 

7517 

No One or more values from 

the list: 

• ais-accounts 

• ais 

• pis 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 61 / 100 

If not provided, it is 

accepted on the basis of 

rights based on the roles 

described in the TPP 

certificate. 

 

Example of request: 

POST /register HTTP/1.1 

     Content-Type: application/json 

     Accept: application/json 

     Host: server.example.com 

     { 

       "software_statement": " 

eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJqd2tzIjp7ImtleXMiOlt7Imt0eSI6IlBLSV

giLCJ4NWMiOlsiTUlJRTNqQ0NBOGFnQXdJQkFnSUNBd0V3RFFZSktvWklodmNOQVFFRkJRQXdZe

kVMTUFrR0ExVUVCaE1DVlZNVlp3PT0iLCJBQTRHQkFEdC9VRzl2VUpTWlNXSTRPQjlMK0tYSVBx

ZUNnZllyeCtqRnoiXSwidXNlIjoic2lnbiIsImtpZCI6ImtpZF9naXZlbl9ieV90cHAifV19LCJ

yZWRpcmVjdF91cmlzIjpbImh0dHBzOi8vdHBwLmRvbWFpbi5leGFtcGxlL29hdXRoMi1jYWxsYm

FjayJdfQ.J5ZWE6kKuIN2YxTUk14yyXWT4Ka72jQiXsx6BzxZrRM" 

     } 

Example of the software_statement parameter: 

{ 

  "redirect_uris": [ 

    "https://client.example.org/callback", 

    "https://client.example.org/callback2" 

  ], 

  "client_name": "My Money Planner", 

  "logo_uri": "https://client.example.org/logo.png", 

  "jwks_uri": "https://client.example.org/my_public_keys.jwks", 

  "client_desc": "One app to manage all your personal finances!", 

  "sub": "PL-PFSA-43124312414", 

  "sub_name": "Money Planning Sp. z o.o.", 

  "scope": "ais ais-accounts" 

} 

Positive response 

Proper registration of the client application is signalled by the HTTP 201 Created response code. The 

content of the response is a JSON document (Content-type: application / json), containing the fields 

presented below, however it is permissible to answer with any other fields, except that it is assumed 

that values not listed below should not be required to construct a correct API requests (should be 

purely informational). 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 62 / 100 

Response fields 

Fact ID Meaning Required Comments 

client_id The unique identifier of the TPP 

application 

No If the ASPSP does not 

support registration of 

more than one application 

per TPP, it is possible for it 

to omit the client_id value 

in the response. 

It is recommended that 

client_id should be equal to 

the TPP identifier for the 

default application of the 

given TPP (i.e. one for which 

the TPP did not provide 

specific application 

identification by indicating 

software_id). It also allows 

the use of such a value 

conventionally when ASPSP 

does not support 

registration of many 

applications.  

If the ASPSP returns the 

client_id value, the TPP 

should provide this value in 

the API requests that allow 

it (primarily the / authorize 

and / token methods) 

client_secret Secret value used to authenticate the 

client application to the 

authorization server 

No Depending on the method 

of authorizing method / 

token calls, the value may 

or may not be provided. 

Unless the registration 

server returns client_secret, 

it should be given at the 

input of the / token method 

api_key Secret value used to identify the 

client application relative to the API 

No As long as the registration 

server returns api_key, it 

should be given as input in 

XS2A calls supporting it 

jwks A collection of keys (certificates - for 

asymmetric cryptography) that can 

Conditionally 

YES (unless 

It must contain a certificate 

(or place of certificate 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 63 / 100 

be used by ASPSP to sign an API 

response. 

 

jwks_uri 

specified) 

download) of the seal in 

accordance with ETSI TS 119 

495, which can be used to 

sign the reply. 

ASPSP can optionally 

support for multiple 

certificates per TPP / 

application, in which case 

the collection may contain 

more than one seal 

certificate. 

While the ASPSP intends to 

use the "kid" parameter to 

identify the key used to sign 

the API response, the value 

of this parameter must be 

provided for each key 

located in jwks / jwks_uri 

(kid parameter). If the kid 

parameter is not given, it is 

assumed that ASPSP will use 

the unique key identifier 

(fingerprint) in the replies, it 

is recommended to use x5t 

# 256. 

jwks_uri Conditionally 

YES (unless 

jwks specified) 

 

Example of response:  

HTTP/1.1 201 Created 

     Content-Type: application/json 

     Cache-Control: no-store 

     Pragma: no-cache 

 

{ 

  "jwks": { 

    "keys": [ 

      { 

        "kty": "PKIX", 

        "x5c": [ 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 64 / 100 

          

"XcFvvE3jCCA8ZasDDAgICAwEwDQYJKoZIhvcNAQEFBQAwYzELMAkGA1UE[int) w 

odpowiedz 

          "xcAADt/UG9vUJSZSWI4OB9L+KX[YJKoZIhvcNAQEFBQA 

        ], 

        "use": "sign", 

        "kid": "kid_given_by_bank" 

      } 

    ] 

  }, 

  "client_id": "s6BhdRkqt3" 

} 

Negative response 

The incorrect answer is signalled by a response code other than HTTP 201 Created. In the general case 

the registration error is signalled by codes: 

- 401 - in the absence of confirmation of the identity of the client application or its issuer, 

- 403 - in the event that the request concerns the granting of a scope of rights exceeding those allowed, 

e.g. resulting from regulatory authorization. 

Negative response fields - consistent in structure with negative responses to requests to other XS2A 

interface methods.  

 

6.6.2 Management of the JWS-SIGNATURE certificates 

The PolishAPI standards requires that all requests and responses be signed in accordance with the JWS-
SIGNATURE standard within the XS2A interface (ASPSP’s side) and callback interface (TPP’s side). This 
fact entails a necessity to manage the certificates, both in the context of signing the messages sent 
and their agreement and provision to the other side of the communication. This necessity is 
symmetrical, i.e. it concerns both the ASPSP and the TPP. 

Considering the communication efficiency aspects in the XS2A and callback interfaces as well as the 
potential difficulties in the management of the encryption infrastructure related to the possibility of 
use of an unlimited number of certificates, the PolishAPI standard introduces the following 
requirement, which is an extension of the RFC 7515 standard in the context of the JWS-SIGNATURE 
header parameters: 

- use of the ‘kid’ header parameter is required (extension of 4.1.4 of RFC 7515) 

- use of the ‘x5t#S256’ header parameter is required (extension of 4.1.8 of RFC 7515) 

The joint satisfaction of both above-mentioned requirements in the construction of each JWS-
SIGNATURE allows the following:  

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 65 / 100 

a) unambiguous identification of the certificate at the reader's side, its finding in the internal 
encryption infrastructure and its use to read the signature content 

b) skipping of the necessity to agree the certificate with regard to each message sent and 
received via the XS2A and callback interfaces 

The introduction of the requirements described implies a necessity of a one-off prior or simultaneous 
(with regard to the message signed by JWS-SIGNATURE) agreement on the certificate  between the 
communication parties. Considering the scarcity of this operation when compared to the number of 
messages signed using the certificate selected and, consequently, the low cost of its implementation, 
the PolishAPI standard does not impose any requirements in this regard but only determines the 
recommended implementations, i.e.: 

a) the use of the JWS-SIGNATURE header parameter called ‘x5u’ (see 4.1.5 of RFC 7515); it allows 
the URL to be included in the resource constituting a public key of the X.509 certificate,  in the 
same message in which JWS-SIGNATURE was inserted for the first time using the given 
certificate 

b) procedure application based on the ‘OAuth 2.0 Dynamic Client Registration’ protocol (RFC 
7591), allowing a prior (with regard to the actual communication using the XS2A or callback 
interfaces) agreement on the certificate between the parties, the / register method described 
in the PolishAPI specification can be used for this purpose - see section 6.6.1. 

6.7 Protection against API Abuse 

The API implementation should take into account the mechanisms of protection against excessive 
requests from the part of the users (both authorised and unauthorised ones), in particular those 
generated on purpose with the intention to render the resource unavailable (DoS/DDoS), by an 
application of mechanisms limiting the number of requests supported over a given time unit. The limit 
values should be determined after examination of the specific operational conditions. Limits of this 
kind should be parametrized. The count of the number of resource access requests should base on a 
key that unambiguously identifies the given TPP (the RequestHeader.tppID class) and the meters 
implemented per TPP on the server side. The limit excess must be signalled by HTTP message number 
429 (Too Many Requests). 

The security should be ensured on the basis of OWASP Guidelines - REST Security Cheat Sheet 
(https://www.owasp.org/index.php/REST_Security_Cheat_Sheet). 

6.8 Audit Information Logging 

It is recommended that the time sources for all the parties using the PolishAPI should be synchronized 
in order to ensure that the log entries have the correct time stamp. 

The key business operation logging should ensure non-repudiation and integrity of entries by using the 
data from JWS Signature. 

A log should contain necessary information that will allow a precise time analysis in case of an incident 
so that it would be possible to combine particular entries into a single transaction. The element 
combining particular entries may be, for example, an abbreviation from the authorisation token. 

  

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/
https://www.owasp.org/index.php/REST_Security_Cheat_Sheet


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 66 / 100 

7 Technical Description of the Authentication and Authorisation 
Process 

7.1 Scope and scope_details Parameters 

The scope parameter defines the following access scopes (corresponding to the consent granted by 
the PSU to the TPP with regard to the provision of services available via the XS2A interface). It is 
required to pass on only one of them:  

• ais-accounts – the right to retrieve a list of the PSU’s accounts; 

• ais – the right to take information about one or more accounts indicated by the PSU;  

• pis – the right to initiate a single payment or multiple payments in the form of a batch of 
transfers as well as to take information about the status of transactions and a batch of 
transfers initiated; 

 
The detailed scope and conditions of services provided by the TPP on the basis of the above-mentioned 
rights were described in the form of a set of XS2A interface methods in the technical specification of 
the PolishAPI standard (Annex No. 1), separately for each of the AIS and PIS services. 

The scope_details parameter defines the time ranges, limitations and details of the given 
authorisation: 

a) as to the scope of resources which are made available (e.g. a list of accounts) 
b) time for which they are made available 
c) limit of the number of uses 
d) list of operations it concerns 
e) selected operation parameters, e.g. length of back history, transfer parameters etc. 

A specification of the scope_details parameter structure is given in Annex No. 1. 

The above parameters are sent by the TPP as POST (due to the possible size of scope_details) in the 
JSON format - encoded and signed using the JSON Web Signature in accordance with RFC 7515.The 
PolishAPI standard does not provide the possibility of providing two independent lists of privileges 
(privilege_list) for the same account, as long as these lists contain the same privilege (eg the ability to 
display the history of booked transactions). Additionally, the standard assumes that the choice of an 
account by the user (PSU) on the ASPSP side, if it is enabled by ASPSP, cannot result in the appearance 
of two privilege lists containing the same privilege (with different parameters) for the same account - 
the authorization mechanism should take into account the need to limit the choices of PSUs in order 
to prevent this situation (eg by preventing the selection of certain accounts in the context of already 
made choices or validation that prevents acceptance of the consent so filled). 
The above limitation is necessary to ensure the unambiguous assignment of API calls to specific 
consent and to ensure the decidability of whether the request is authorized.Authentication 
Mechanism on the ASPSP’s Side 

The process of the PSU's authentication on the ASPSP’s side was developed on the authorization code 
method as defined in the OAuth 2.0 standard. The high level business aspect of this mechanism was 
presented in the diagram below while a detailed procedure of the authentication process and of the 
process of obtaining authorization for the ASPSP’s resources were described in Chapter 11.1. 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 67 / 100 

 

Figure 19: Authentication Mechanism on the ASPSP’s Side 

Below are described the steps and changes with regard to the OAuth 2.0 standard implemented by the 
PolishAPI in relation with legal and security requirements. 

7.2 Redirection from the TPP to the ASPSP 

The redirection comprises the following parameters: 

 

PARAMETER REQUIRED COMMENT 

response_type Required ‘Code’ value 

client_id Required TPP’s unique identifier 

redirect_uri required   

scope Required  

scope_details Required  

state Required A random value unique for the TPP – protection against 
the Cross-Site Request Forgery attack 

7.2.1 PSU’s authentication and authorisation 

Performance on the ASPSP's side. 

7.2.2 Reverse redirection of the PSU’s browser to the TPP 

When the PSU is granting an authorization for the TPP, the authorization server delivers this 
information to the TPP by sending a one-time authorization code, which means that it may be used by 
the TPP to obtain access to the ASPSP’s resources (obtain an access token) exactly one time only. The 
code is sent within the request to redirect the PSU’s browser to the redirect_uri address (using the 
Content-Type parameter with the value of ‘application/x-www-form-urlencoded’). Additionally, the 
request may also contain the state parameter, which is required only if it was previously sent by the 
TPP in the authorization request. 

A sample reverse redirection to the TPP after the PSU’s authentication and the authorization of the 
TPP’s access to the ASPSP’s resources: 

HTTP/1.1 302 Found 

     Location: https://[redirect_uri]?code=[authorization_code] 

               &state=[state] 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 68 / 100 

where: 

 [redirect_uri] – TPP-side address sent in the authorization request to which the PSU’s browser 
is redirected after the process of that PSU’s authentication and the authorization of access to the 
ASPSP’s resources has been completed 

 [authorization_code] – one-time authorization code confirming a correct authentication of the 
PSU and the PSU’s grant of authorization for the TPP to access the ASPSP’s resources 

 [state] – additional parameter allowing the adjustment of the authorization request with the 
redirection request after the completion of the PSU's authentication and after the grant by the PSU of 
authorization to the TPP to access the ASPSP’s resources, used to prevent the ‘cross-site request 
forgery’ type attacks. 

In case of an error that may occur at the ASPSP’s side before or during the PSU’s authentication process 
or resource access authorisation, the ASPSP must notify this fact to the TPP and indicate the type of 
extraordinary situation that caused this error. To this end, the callback request to redirect the PSU’s 
browser to the redirect_uri address as indicated by the TPP is used. The error type and related optional 
detailed information are included in the dedicated parameters located in the Location header of the 
redirection. The following parameters of the Location header are used to provide error information: 

 [error] – required parameter, its value defines the type of exceptional situation that caused 
the error; this parameter must assume one of the following dictionary values: 

▪ invalid_request – inn case the request to redirect the PSU’s browser to the ASPSP was  
erroneous, in particular when it was inconsistent with the address provided by the ASPSP 
in response to the /authorize request of the XS2A interface 

▪ invalid_authentication – in case the PSU was not able to terminate the ASPSP-side 
authentication process or there is a mismatch between the psuIdentifierValue parameter 
and the identity of the PSU authenticated 

▪ context_mismatch – in one of the following cases: 

a. the authenticated PSU is not an individual client and the /authorize request does not 
specify a corporate context 

b. the authenticated PSU is not a corporate client and the /authorize request indicates a 
corporate context 

c. the context of the authenticated PSU is not compliant with the context provided in the 
/authorize request 

d. the authenticated PSU has more than one context and the /authorize request does not 
indicate any context 

▪ access_denied – in case the PSU failed to authorise access for the TPP to its resources or 
such an authorization was not admitted by the ASPSP 

▪ server_error – in case of occurrence of an unexpected error resulting from the ASPSP’s 
system failure which made it impossible to execute the PSU's authentication process and 
the resource access authorization process 

▪ temporarily_unavailable – in case the ASPSP-side system is temporarily unavailable, which 
makes it impossible to execute the PSU’s authentication process and the resource access 
authorization process 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 69 / 100 

[error_description] – optional parameter, allowing for the provision of additional business 
information about error details 

[state] – required parameter, the parameter value must be compliant with the value of the 
corresponding state parameter provided by the TPP in the authorize request. 

The sample redirection sent by the ASPSP to provide information about the error: 

HTTP/1.1 302 Found 

     Location: https://[redirect_uri]?error= access_denied&state=[state] 

7.2.3 Token collected on the basis of the Authorization Code 

 

PARAMETER REQUIRED COMMENT 
grant_type required Value of the ‘authorization_code’ 

Code required Compliant with the value given in step 7.2.3 

redirect_uri required  Value in accordance with the value in step 7.2.1 

client_id required TPP’s unique identifier 

The TPP’s authentication takes place on the basis of a certificate used for the TLS connection 

Data returned, also allowing for the scope_details field, containing details of consents granted by the 
PSU. 

 

PARAMETER REQUIRED COMMENT 
access_token required  

token_type 
 

required  

expires_in required   

refresh_token optional  

scope optional  

scope_details optional  

7.2.4 Consent Withdrawal 

The consent withdrawal is made using the /{version}/accounts/{version}/deleteConsent method 

7.2.5 Use of the scope_details structure 

• The one-time consent is supported using the scopeUsageLimit parameter. 

7.3 Authentication Mechanism in an External Authorisation Tool 
(Decoupled) 

The basis assumption of the PSU’s authentication method described is the use of EAT (External 

Authorization Tool). It is a tool the minimum functionality of which is the capacity to carry out a strong 

authentication of the PSU within the understanding of the technical requirements of the PSD2 

Directive. Additionally, EAT may constitute software that is external in relation to the ASPSP’s technical 

infrastructure, which ensures a safe exchange of the authorization information. 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 70 / 100 

A session between the TPP and the ASPSP, allowing for the strong authentication of the PSU and based 

on the Decoupled method in order to allow the TPP to use the XS2A interface, must be established in 

accordance with the process as described below. The process described was developed on the basis of 

the assumptions of the OAuth 2.0 protocol, which means that it uses the terms defined therein (e.g. 

‘authorization code’, ‘access token’), but constitutes a separate way of gaining access to the XS2A 

interface in view of a lack of the use of redirections within the understanding of the http protocol, 

which are a mechanism this standard requires in the ‘Authorization Code Grant’ method. This 

approach was applied in order to ensure a coherence of the process of gaining access to the XS2A 

interface, irrespective of the PSU’s authentication method selected, and its objective is to facilitate 

integration activities related to the use of the XS2A interface by the TPP. 

The TPP initiates a process of establishment of a session with the XS2A interface on the ASPSP’s side 

by calling the following XS2A interface method:  

POST /[VER_A]/auth/[VER_B]/authorizeExt 

The data sent in the request should be compliant with the XS2A interface technical specification as 

described in the Annex No. 1. It should be stressed that these parameters in an overwhelming majority 

are identical with the parameters of the request initiating a session with the XS2A interface using the 

ASPSP-side authentication mechanism as described in section 7.1.1. The most important parameters 

of that request were described in the table below. 

PARAMETER REQUIRED COMMENT 
response_type Required Constant value: code 

eatCode Required One-time authorization code generated by the EAT tool 

client_id Required TPP’s unique identifier 

callbackURL Required  Address of the callback function in the TPP’s interface to 
which the request containing a result of the PSU’s 
authentication will be sent 

apiKey  A key securing and adjusting the response to the request 
send in the form of a callback function 
The key value has two functions: It constitutes a value 
identifying the ASPSP, on the basis of which the TPP 
determines whether or not the party sending the callback 
request is the party to which the original request was sent 
it allows one to match the callback request and the 
request sent originally by the TPP. Necessary in case of 
many requests sent to the ASPSP, responses to which are 
sent in the form of requests to the TPP’s callback interface 
The specific character of the provision of the apiKey 
attribute, both in the requests to the XS2A interface and 
to the callback interface, was described in the swagger 
format (version 2.0) in Annexes No. 1 and 2. 

scope_details Required Parameter structure described in Annex No. 1 

 

In result of the calling of this method and after a positive verification by the ASPSP’s of the TPP (Mutual 

TLS Authentication, client_id verification) and after the confirmation of non-repudiation of the 

message received (JWS Signature), information on the confirmation of the process of the PSU’s 

authentication will be returned.  

Notes: 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 71 / 100 

The one-time authorization code, which is required as an input parameter of the authorizeExt method, 

must be generated by the EAT tool at the request of the PSU who has been earlier authenticated by 

that tool. 

The PSU must previously activate access to the EAT tool in accordance with procedure developed and 

required by each of the ASPSPs. 

The EAT tool ensures a procedure of strong authentication of the PSU. Optionally, the EAT also ensures 

the determination by the user of a source account (PIS) or an account/accounts covered by the consent 

(AIS), if this was not defined by the TPP in the call. The result of the SCA procedure completed must be 

sent as a message to the appropriate ASPSP. The way of provision to the ASPSP of the PSU’s strong 

authentication result, obtained in the EAT tool is not discussed in this PolishAPI specification.  

The result of the PSU’s strong authentication procedure must be then provided by the ASPSP to the 

TPP using the following TPP-side callback interface method: 

[callBackURL]/[VER_A]/auth/[VER_B]/authorizeExtCallBack 

The scope of the request data was described in detail in Annex No. 2. The most important parameters 
of this request are:  

PARAMETER REQUIRED COMMENT 
authorized Required Logic tag designating the result of the PSU’s strong 

authentication by the EAT tool. 
- true – the PSU has been authenticated 
- false – the PSU has not been authenticated 
 

code Conditional It is a value of the authorization code within the 
understanding of the OAuth 2.0 standard and the 
‘authorization code’ method generated by the ASPSP 
only and exclusively in result of the PSU’s authentication 
in the EAT tool. 
 

 

On the basis of the authorization code obtained in the previous step, the TPP should initiate an XS2A 

interface session by using the following method of this interface, in which one of the parameters 

required is an authorization code and the feedback is, among other things, the so-called ‘Access token’ 

(within the understanding of the OAuth 2.0 standard): /[VER_A]/auth/[VER_B]/token 

The way this method is called is compliant with sec. 7.2.4, which describes the way of session initiation 
in the ASPSP-side PSU’s authentication method. A detailed technical specification of this method is 
given in Annex No. 1. 

7.4 Access token taking on the basis of the refresh token 

The TPP may take a new access token using the refresh token (provided it has been issued). This 
situation may only take place in case of the AIS and PIS services for which the access token is required, 
i.e. in the following situations: 

a) The validity of the original access token expired and it is allowed to refresh it for an identical 
scope of consents 

An initiation of a transfer or a batch of transfers was ordered using a selected PIS service method and 
it is necessary that the TPP obtained a new access token for another scope of consents, i.e. for the 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 72 / 100 

purposes related to the verification of the status of a transfer or a batch of transfers ordered, without 
a renewed SCA procedure. Below is presented a TPP’s request and a response from the ASPSP’s server 

 

PARAMETER REQUIRED COMMENT 
grant_type required Value of ‘refresh_token’ 

refresh_token required Compliant with the value provided by the ASPSP in 
step 7.2.4 

scope optional The requested scope may not be larger than the one 
provided in step 7.2.4 

scope_details optional The requested scope may not be larger than the one 
provided in step 7.2.4 

is_user_session optional Defines whether or not the given session is related 
with an interaction with the PSU – true/false values. 
Expansion of the OAuth2 standard 

user_ip Required, if 
is_user_session=true 

IP of the user’s browser (information for fraud 
detection needs) 
Expansion of the OAuth2 standard 

user_agent Required, if 
is_user_session=true 

Information concerning the version of the user’s 
browser (information for fraud detection needs) 
Expansion of the OAuth2 standard 

 
The response sent by the ASPSP is the same as in item 7.2.4 

7.5 New access token taking on the basis of the exchange token 

It is a method of establishment of a communications session with the XS2A interface the purpose of 
which is to provide an opportunity to exchange the access token without a necessity to re-run the SCA 
procedure in case of a change to the scope of consents pursuant to a scenario described in sec. 
1.4.4.2.3 of the specification. This scenario assumes the access is obtained to a precisely defined subset 
of PSU's accounts as indicated by the PSU on the basis of a list of all its accounts with the given ASPSP, 
which was previously obtained by the TPP on the basis of another type of the PSU's consent and after 
the SCA procedure was carried out. 

To effect this session establishment method, it is necessary to use a dedicated authorization method 
indicated in the ‘grant_type’ attribute of the method/token with the ‘exchange_token’ value, and the 
provision in the dedicated attribute of the same name (exchange_token) of the value of access token 
obtained during the earlier request for the consent to take a list of accounts associated with a valid 
XS2A interface communications session. 

Below is presented a TPP’s request and a response from the ASPSP’s server 

 

PARAMETER REQUIRED COMMENT 
grant_type required Value of ‘exchange_token’ 

exchange_token required Access token obtained when requesting a consent to 
take a list of accounts 

scope optional The scope requested must be narrowed down to the 
list of accounts selected by the PSU and to 
authorizations concerning the scope of information 
requested, e.g. account details, transaction history or 
transaction details 

scope_details optional The scope requested must be narrowed down to the 
list of accounts selected by the PSU and to 
authorizations concerning the scope of information 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 73 / 100 

requested, e.g. account details, transaction history or 
transaction details 

is_user_session optional Defines whether or not the given session is related 
with an interaction with the PSU – true/false values. 
Expansion of the OAuth2 standard 

user_ip Required, if 
is_user_session=true 

IP of the user’s browser (information for fraud 
detection needs) 
Expansion of the OAuth2 standard 

user_agent Required, if 
is_user_session=true 

Information concerning the version of the user’s 
browser (information for fraud detection needs) 
Expansion of the OAuth2 standard 

 

The response sent by the ASPSP is the same as in item 7.2.4  

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 74 / 100 

8 Technical description of the PIS Service 

This chapter constitutes a summary of the API specification in the swagger format defined in Annex 
No. 1  and Annex No. 2. 

 

8.1 Diagram of Activity in the PIS Service 

 

Figure 20: High-level diagram of activity in the PIS Service 

8.2 XS2A Interface Request Structure 

The table below contains basic information about all the PIS service methods of the XS2A  interface, 
including the classes of objects of the cannon model of data provided in the request obtained in the 
responses. 

 

INTERFACE METHOD  DESCRIPTION KMD OBJECT CLASS 
/payments/{version}/domestic Initiates a domestic transfer DomesticRequest/ 

AddPaymentResponse 

/payments/{version}/EEA Initiates a SEPA foreign transfer EEARequest/ 
AddPaymentResponse 

/payments/{version}/nonEEA Initiates a non-SEPA foreign 
transfer 

NonEEARequest / 
AddPaymentResponse 

/payments/{version}/tax Initiates a transfer to the tax 
office 

TaxRequest / 
AddPaymentResponse 

/payments/{version}/bundle Initiates multiple transfers in the 
form of a batch 

BundleRequest / BundleResponse 

/payments/{version}/getPayment Collects the transfer status  GetPaymentRequest/ 
GetPaymentResponse 

/payments/{version}/getBundle Retrieves the execution status of 
a batch of transfers 

GetBundleRequest / 
GetBundleResponse 

/payments/{version}/getMultiple
Payments 

Collects statuses of multiple 
payments. Calling does not 
require token reading. 

GetMultiplePaymentsRequest / 
GetMultiplePaymentsResponse 
 

/payments/{version}/cancelPaym
ent 

Cancels a transfer or a batch of 
transfers initiated 

CancelPaymentsRequest/ 
CancelPaymentsResponse 

/payments/{version}/recurring Defines a new recurring payment RecurringRequest/ 
RecurringResponse 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 75 / 100 

/payments/{version}/getRecurrin
gPayment 

Retrieves the status of a recurring 
payment 

GetRecurringPaymentRequest / 
GetRecurringPaymentResponse 

/payments/{version}/cancelRecur
ringPayment 

Allows a recurring payment 
cancellation 

CancelRecurringPaymentRequest/ 
CancelRecurringPaymentResponse 

 

8.3 Structure of call back interface requests - CallBack  

The PIS service specification comprises also a definition of CallBack interface, owing to which the ASPSP 
has a possibility to notify the TPP, in an asynchronous way, about changes in the status of the payments 
and batches of payments  initiated using the selected PIS service method of the XS2A interface. For 
this purpose, the following CallBack interface methods were defined: paymentCallBack, 
bundleCallBack. A detailed technical specification of the CallBack interface for the PIS  service was 
defined in Annex No. 2, therefore the table below describes only basic elements of this interface.  

 

INTERFACE METHOD  DESCRIPTION KMD OBJECT CLASS 
/payments/{version}/paymentCal
lBack 

Provides the status of 
performance of a single payment 

PaymentCallBackRequest / 
CallBackResponse 

/payments/{version}/bundleCallB
ack 

Provides the execution status of a 
batch of payments 

BundleCallBackRequest / 
CallBackResponse 

/payments/{version}/recurringPa
ymentCallBack 

Provides the status of a recurring 
payment 

RecurringPaymentCallBackRequest / 
CallBackResponse 

 

The method used to secure the API is the ‘apiKey’ type (https://swagger.io/docs/specification/2-
0/authentication/) and, additionally, the fingerprint of the TPP’s server certificate used to make the 
TLS connection of the CallBack - sent in the keyID parameter - is verified. In the PISs called, the TPP 
transfers the apiKey value and the callbackURL used in the CallBacks to the ASPSP. 

In case of a failed call, the TPP may renew it and the number of repeated calls will be defined by the 
ASPSP in the implementation documentation.  
  

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/
https://swagger.io/docs/specification/2-0/authentication/
https://swagger.io/docs/specification/2-0/authentication/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 76 / 100 

9 Technical description of the AIS Service 

This chapter constitutes a summary of the API specification in the swagger format defined in Annex 
No. 1  and Annex No. 2. 

9.1 Diagram of Activity in the AIS Service 

 

Figure 21: High-level diagram of activity in the AIS Service 

9.2 XS2A Interface Request Structure 

The table below contains basic information about all the AIS service methods of the XS2A  interface, 
including the classes of objects of the cannon model of data provided in the request obtained in the 
responses. 

 

INTERFACE METHOD  DESCRIPTION KMD OBJECT CLASS 
/accounts/{version}/deleteConsent Deletes/invalidates the consent DeleteConsentRequest/ 

string 

/accounts/{version}/getAccounts Collects all accounts of the PSU AccountsRequest/ 
AccountsResponse 

/accounts/{version}/getAccount Collects a single payment account  AccountInfoRequest/ 
AccountInfo 

/accounts/{version}/getTransaction
sDone 

Collects all transactions made at the 
account  

TransactionInfoRequest/ 
TransactionDoneInfoResponse 

/accounts/{version}/getTransaction
sPending 

Collects all pending transactions at 
the account  

TransactionInfoRequest/ 
TransactionPendingInfoRespons
e 

/accounts/{version}/getTransaction
sRejected 

Collects all rejected transactions at 
the account  

TransactionInfoRequest/ 
TransactionRejectedInfoRespon
se 

/accounts/{version}/getTransaction
sCancelled 

Retrieves cancelled transactions at 
the account 

TransactionInfoRequest/ 
TransactionsCancelledInfoResp
onse 

/accounts/{version}/getTransaction
sScheduled 

Retrieves scheduled transactions at 
the account 

TransactionInfoRequest/ 
TransactionsScheduledInfoResp
onse 

/accounts/{version}/getHolds Collects all account holds  TransactionInfoRequest/ 
HoldInfoResponse 

/accounts/{version}/getTransaction Collects data of a single TransactionDetailRequest/ 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 77 / 100 

Detail transaction/hold TransactionDetailResponse 

9.3 Structure of call back interface requests - CallBack 

The AIS service specification comprises also a definition of CallBack interface, owing to which the ASPSP 

has a possibility to provide to the TPP, in an asynchronous way, the information about the account, 

transactions and holds, the provision of which was requested by the TPP by calling the appropriate 

methods of the XS2A interface. To this end, a number of the CallBack interface methods has been 

defined, a detailed technical specification of which was defined in Annex No. 2. The table below 

describes only the basic elements of the CallBack interface for the AIS service. 

INTERFACE METHOD  DESCRIPTION KMD OBJECT CLASS 
/accounts/{version}/accountsCallB
ack 

Provides information about details 
of the payment account selected 

AccountsRequest / 
CallBackResponse 

/accounts/{version}/transactionsD
oneCallBack 

Provides information about 
transactions done for the given 
payment account 

TransactionDoneInfoRequest / 
CallBackResponse  

/accounts/{version}/transactionsPe
ndingCallBack 

Provides information about 
pending transactions for the given 
payment account 

TransactionPendingInfoRequest / 
CallBackResponse 

/accounts/{version}/transactionsRe
jectedCallBack 

Provides information about 
rejected transactions for the given 
payment account 

TransactionRejectedInfoRequest 
/ CallBackResponse 

/accounts/{version}/transactionsCa
ncelledCallBack 

Provides information about 
cancelled transactions at the given 
payment account 

TransactionCancelledInfoRequest 
/ CallBackResponse 

/accounts/{version}/transactionsSc
heduledCallBack 

Provides information about 
scheduled transactions at the given 
payment account 

TransactionScheduledInfoReques
t / CallBackResponse 

/accounts/{version}/transactionsH
oldCallBack 

Provides information about holds 
for the given payment account 

HoldInfoRequest / 
CallBackResponse 

 

  

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 78 / 100 

10 Technical Description of the CAF Service 

This chapter constitutes a summary of the API specification in the swagger format defined in Annex 
No. 1. 

10.1 Diagram of Activity in the CAF Service 

 

Figure 22: High-level diagram of activity in the CAF Service 

10.2 XS2A Interface Request Structure (including a description of fields and 
information if required) 

 

INTERFACE METHOD  DESCRIPTION KMD OBJECT CLASS 
/confirmation/{version}/getConfir
mationOfFunds 

Confirmation of fund availability  confirmationOfFundsRequest/ 
confirmationOfFundsResponse 

  

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 79 / 100 

11 Use of the XS2A interface methods and authorization services – 
sequence diagrams 

The sequence diagrams presented in the UML notation describe interactions occurring between the 

PSU, the TPP, ASPSP-side systems and external systems which reflect the full scope of XS2A interface 

use scenarios, which constitutes the subject matter of the PolishAPI specification. The diagrams 

present only basic sequence and intervention paths leading to the achievement of the goal intended. 

This means that particular interactions may end in failure leasing to error messages and codes returned 

by the XS2A interface methods or authorization service methods and which were not included in the 

diagrams for picture clarity. For the same reason, particular interactions contain only some parameters 

of requests and responses that are important for the correctness of the sequences presented (a full 

specification with all the parameters of requests and responses of the XS2A interface services and the 

authorization services was described in the technical specification of those interfaces).  

The following abbreviations, acronyms and designations were used in the diagrams: 

ASPSP Auth – a communications interface provided by the ASPSP, pursuant to the PolishAPI 

specification (AS - Authorization Service), the role of which is to provide methods to authorise the 

TPP’s access to the XS2A interface services and, in effect, establishment of sessions with that interface. 

ASPSP XS2A – a communications interface provided by the ASPSP, the role of which is to ensure the 

performance of business services described in the PolishAPI specification (AIS - Account Information 

Service, PIS – Payment Initiation Service i CAF – Confirmation of the Availability of Funds). 

EAT – External Authorization Tool, a system ensuring the SCA, i.e. a procedure of strong authentication 

of the PSU. 

eatCode – a one-time code generated in the EAT tool at the PSU’s request used to authorise access to 

the XS2A as one of the SCA procedure factors. 

sync / async – designation of the type of communication (synchronous, asynchronous), between the 

actors presented in the diagram. 

tpp_redirect_url – a URL address to which the PSU’s browser should be redirected after the 

completion of the process of the PSU's authentication and the TPP’s access authorization to the ASPSP-

side resources of that PSU, in case of the Redirection method of the PSU’s authentication. 

auth_redirect_url – an address to which the PSU’s Internet browser should be redirected. In order to 

authenticate the PSU using the Redirection method. 

authorization_code – a one-time authorisation code which constitutes a confirmation of the TPP’s 

authorization to access the PSU’s resources. 

access_token – a token allowing access to the use of the XS2A interface services, described in more 

detail in sec. 5.3 Definition of Access Token. 

callback_url – an address of the TPP-side callback interface indicating where the asynchronous 

responses should be sent. 

apiKey – a type of token sent in the request in order to secure an asynchronous communication with 

the XS2A interface. 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 80 / 100 

11.1 Establishment of an XS2A session with the ASPSP-side PSU’s 
authentication 

The diagram presents a communications sequence leading to the establishment of a session with the 

XS2A interface, allowing for the PSU’s authentication using the redirection method as described in 

Chapter 7.1 Authentication Mechanism on the ASPSP’s Side 

 

Figure 23: Establishment of an XS2A session – ASPSP-side authentication method 

 

Description of interactions as per the sequence of their occurrence: 

1: The PSU initiates the use of the selected XS2A interface service at the TPP's application side  

2: The TPP presents a form with data required to identify the ASPSP, call an XS2A interface service and 

obtain access to that interface 

3: The PSU inserts and confirms the data required in the TPP’s form 

4: The TPP requests authorisation of access to the XS2A interface by calling the following authorization 

service method: 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 81 / 100 

/[VER_1]/auth/[VER_2]/authorize 

One of the parameters of this method is an url address (tpp_redirect_url) redirecting to the TPP’s 

interface after the completion of the procedure of the PSU’s authentication and authorization of the 

TPP’s access to the PSU’s resources with the ASPSP. 

5: The ASPSP validates the correctness of the authorization request received in terms of various 

aspects, including the correctness of signature, TPP’s identity, compliance of the consents granted with 

the TPP’s authorization 

6: The ASPSP, in case of a positive outcome of the authorization request validation, returns a response 

containing an URL address to its own interface (auth_redirect_url) used for the PSU’s authentication 

and authorization in the context of the request sent by the TPP 

7: The TPP interprets the response from the ASPSP and returns a response to the PSU's browser in the 

form of a redirection to the interface of the ASPSP that obtained a response to the authorization 

request 

8: The PSU's browser automatically redirects to the ASPSP's interface using the auth_redirect_url 

received 

9: The ASPSP returns to the browser a page containing the PSU’s authentication form 

10: The PSU inserts authentication data to the form and the data, after confirmation by the PSU, are 

sent to the ASPSP 

11: The ASPSP validates the correctness of the authentication data received as part of the SCA 

procedure 

12: After the confirmation of the PSU’s identity, the ASPSP returns to the browser a page containing a 

description of the scope of consents the TPP requested in order to perform the XS2A interface services, 

together with a form used to confirm the TPP’s request, e.g. it presents a form with a list of PSU’s 

account to be selected or with data of the transaction initiated. 

13: The PSU accepts the TPP-requested consents by confirming the form presented, which is preceded 

by a potential selection of a subset of accounts (possible in case of selected XS2A interface services) 

and by provision of this information to the ASPSP 

14: Having obtained the consent acceptances, the ASPSP generates and retains a one-time 

authorization code 

15: The ASPSP returns to the browser a response in the form of redirection to the TPP’s interface, i.e. 

to the url address of return to the TPP received in the authorization request  (tpp_redirect_url), and 

sends the value of the one-time authorization code generated as the parameter of this response 

16: The PSU’s browser automatically redirects to the TPP’s interface by means of the return url address 

received (tpp_redirect_url), together with the one-time authorization code 

17: On the basis of the request received with the one-time authorization code, the TPP requests the 

ASPSP to start a session with the XS2A interface in the context of the authorization received from the 

PSU. To this end, the following authorization service method is called and one of the required elements 

of this method is a one-time authorization code (authorization_code): 

/[VER_1]/auth/[VER_2]/token 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 82 / 100 

18: The ASPSP validates the XS2A session establishment request received by verification of the 

authorization code received (authorization_code) and the data concerning the PSU’s consents 

granted. After a positive verification, the ASPSP establishes a new session of the XS2A interface in 

result of which a unique access token (access_token) is generated. 

19: The ASPSP returns a response to the session establishment request to the TPP, which contains, 

without limitation, the value of the access token generated, confirming thus the establishment of a 

session with the XS2A interface  

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 83 / 100 

11.2 XS2A session establishment with the PSU's authentication using an 
external authorization tool (decoupled) 

The diagram presents a communications sequence leading to the establishment of a session with the 

XS2A interface, allowing for the PSU’s authentication using the decouple  method as described in 

Chapter 7.3 Authentication Mechanism in an External Authorisation Tool (Decoupled) 

 

 

Figure 24: Establishment of an XS2A session –  authentication in an external authorization tool 

Description of interactions as per the sequence of their occurrence: 

1: Via a browser or an application, the PSU sends the data to be authenticated in the EAT tool 

2: The EAT tool verifies the authentication data and grants access to its interface to the PSU 

3: The PSU requests that a one-time code be issued (eatCode) 

4: The EAT tool generates a one-time code (eatCode) 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 84 / 100 

5: The EAT tool returns the one-time code to the PSU's browser or application 

6: The PSU initiates the use of the selected XS2A interface service at the TPP's application side  

7: The TPP presents a form with data required to identify the ASPSP, call an XS2A interface service and 

obtain access to that interface (including, but not limited to, an insertion of the eatCode value) 

8: The PSU inserts and confirms the data required in the TPP’s form 

9: The TPP requests authorisation of access to the XS2A interface by calling the following authorization 

service method: 

/[VER_1]/auth/[VER_2]/authorizeExt 

Due to the asynchronous character of the response to the request, among the parameters of the 

method, it is required to provide a url address (callback_url) of the XS2A callback interface and a 

security token (apiKey). Furthermore, in order to obtain an authorization, it is required to provide the 

one-time code received from the EAT tool (eatCode). 

10: The ASPSP validates the correctness of the authorization request received in terms of various 

aspects, including the correctness of signature, TPP’s identity, compliance of the consents granted with 

the TPP’s authorization 

11: The ASPSP sends a request to the EAT tool in order to carry out the SCA procedure in relation with 

the PSU, including a verification of the correctness of the one-time code (eatCode) received from the 

PSU and generated by EAT. The request also provides business data defining the scope of the PSU’s 

consent. Depending on the XS2A interface service, these may be, for example, a list of the PSU’s 

accounts, data of the initiated payment or numbers of accounts for the transaction history retrieval. 

12: The EAT tool verifies the correctness of the one-time code (eatCode) received from the ASPSP 

13: EAT requests from the PSU a consent for the performance by the TPP of an XS2A interface service 

in the business scope as requested by that TPP, e.g. it presents a form with a list of PSU’s accounts to 

select or data of the initiated transaction. 

14: The PSU accepts the TPP-requested consents by confirming the form presented, which is preceded 

by a potential selection of a subset of accounts (possible in case of selected XS2A interface services) 

15: The EAT tool requests that the PSU provided a second factor in order to complete the SCA 

procedure 

16: The PSU executes a second factor in the EAT tool  

17: The EAT tool verifies the correctness of the second factor provided by the PSU 

 

18: The EAT notifies the ASPSP about the result of the SCA procedure carried out 

19: In case of a positive result of the strong authentication of the PSU and the TPP's authorization to 

access the PSU’s resources (including consents obtained from the PSU), the ASPSP generates and 

retains a one-time authorization code (authorization_code) 

20: The ASPSP notifies the TPP about the result of the request to authorize access to the PSU’s 

resources by calling the following TPP-side callback interface method: 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 85 / 100 

/[VER_1]/auth/[VER_2]/authorizeExtCallBack 

In case the TPP has obtained authorization to access the PSU’s resources, the request contains a one-

time authorization code (authorization_code). 

21: On the basis of the request received with the one-time authorization code, the TPP requests the 

ASPSP to start a session with the XS2A interface in the context of the authorization received from the 

PSU. To this end, the following authorization service method is called and one of the required elements 

of this method is a one-time authorization code (authorization_code): 

/[VER_1]/auth/[VER_2]/token 

22: The ASPSP validates the XS2A session establishment request received by verification of the 

authorization code received (authorization_code) and the data concerning the PSU’s consents 

granted. After a positive verification, the ASPSP establishes a new session of the XS2A interface in 

result of which a unique access token (access_token) is generated. 

23: The ASPSP returns a response to the session establishment request to the TPP, which contains, 

without limitation, the value of the access token generated, confirming thus the establishment of a 

session with the XS2A interface   

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 86 / 100 

11.3 Establishment of an XS2A session with the PSU’s authentication using 
the refresh token method 

The diagram presents a communications sequence leading to the establishment of a session with the 

XS2A interface, using the refresh token method. 

 

Figure 25: XS2A session establishment – refresh token 

Description of interactions as per the sequence of their occurrence: 

1: The TPP sends a request to the ASPSP to start a session with the XS2A interface in the context of a 

session established earlier which was cancelled or in the context of a change necessity (consent scope 

narrowing down). The session is related to an additional token (refresh_token), returned to the TPP 

during the original session establishment procedure. To this end, the TPP calls the following 

authorization service method (as described in 7.4), sending an additional token (refresh_token): 

/[VER_1]/auth/[VER_2]/token 

2: The ASPSP validates the XS2A session establishment request received by verification of the 

additional token received (refresh_token) and the data concerning the PSU’s consents granted. After 

a positive verification, the ASPSP establishes a new XS2A interface session, in result of which a new 

unique access token (access_token) is generated. 

3: The ASPSP returns a response to the session establishment request to the TPP, which contains, 

without limitation, the value of the access token generated, renewing thus the session with the XS2A 

interface. 

11.4 Establishment of an XS2A session with the PSU’s authentication using 
the exchange token method 

The diagram presents a communications sequence leading to the establishment of a session with the 

XS2A interface, using the exchange token method. 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 87 / 100 

 

Figure 26: XS2A session establishment – exchange token 

Description of interactions as per the sequence of their occurrence: 

1: The PSU specifies the details of consents for the TPP by selecting a subset of accounts from the 

accounts previously retrieved by the TPP from the ASPSP, and by determining the scope of 

authorizations to the data related to those accounts, such as account details, account history and the 

time scope or transaction details.  

2: The TPP sends a request to the ASPSP to start a session with the XS2A interface in the context of a 

previously established session that was established in order to retrieve a list of PSU’s accounts and to 

which the access token (access_token) returned to the TPP during the original session establishment 

procedure with a strong authorization of the PSU is related. To this end, the TPP calls the following 

authorization service method, providing the said access token and using the exchange_token 

parameter: 

/[VER_1]/auth/[VER_2]/token 

The required parameters of that request are also the scope and scope_details parameters, which must 

contain a detailed scope of consents, including the numbers of accounts selected by the PSU. 

3: The ASPSP validates the XS2A session establishment request received by verification of the access 

token received (provided in the exchange_token attribute) and the data concerning the PSU’s consents 

granted. After a positive verification, the ASPSP establishes a new session of the XS2A interface in 

result of which a unique new access token (access_token) is generated in the context of the new scope 

of consents. 

4: The ASPSP returns a response to the session establishment request to the TPP, which contains, 

without limitation, the value of the access token generated, confirming thus the establishment of a 

new session with the XS2A interface.  

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 88 / 100 

11.5 XS2A Interface Method Calling with the Use of a Session 

The diagram presents a communication sequence allowing one to call the XS2A interface services for 

which a valid session of that interface is required. The table below contains a list of methods within 

the framework of the AIS and PIS services, for which the sequence presented is obligatory. 

AIS 

/[VER_1]/accounts/[VER_2]/ getAccounts 

/[VER_1]/accounts/[VER_2]/ getAccount 

/[VER_1]/accounts/[VER_2]/ getTransactionsDone 

/[VER_1]/accounts/[VER_2]/ getTransactionsPending 

/[VER_1]/accounts/[VER_2]/ getTransactionsRejected 

/[VER_1]/accounts/[VER_2]/ getTransactionsCancelled 

/[VER_1]/accounts/[VER_2]/ getTransactionsScheduled 

/[VER_1]/accounts/[VER_2]/ getHolds 

/[VER_1]/accounts/[VER_2]/ getTransactionDetail 

PIS 

/[VER_1]/payments/[VER_2]/ domestic 

/[VER_1]/payments/[VER_2]/ EEA 

/[VER_1]/payments/[VER_2]/ nonEEA 

/[VER_1]/payments/[VER_2]/ tax 

/[VER_1]/payments/[VER_2]/ bundle 

/[VER_1]/payments/[VER_2]/ getPayment 

/[VER_1]/payments/[VER_2]/ getBundle 

/[VER_1]/payments/[VER_2]/ cancelPayment 

/[VER_1]/payments/[VER_2]/ recurring 

/[VER_1]/payments/[VER_2]/ getRecurringPayment 

/[VER_1]/payments/[VER_2]/ cancelRecurringPayment 

 

 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 89 / 100 

 

Figure 27: XS2A interface method calling with the use of a session 

Description of interactions as per the sequence of their occurrence: 

1: The PSU initiates the use of the selected XS2A interface service at the TPP's application side 

2: The TPP requests that a session with the XS2A interface be established. The session establishment 

procedure may be carried out on the basis of each one of the variants available, for which the sequence 

diagrams were described in the previous items of this chapter. 

3: The ASPSP returns a response to the session establishment request to the TPP, which contains, 

without limitation, the value of the access token generated, confirming thus the establishment of a 

session with the XS2A interface 

Variant 1 – synchronous services of the XS2A interface 

4: The TPP sends a request to the XS2A interface in order to use a service of this interface selected by 

the PSU (one of the methods listed in the table above). In the request parameters, the input data 

required to perform the service and an access token (access_token) are provided in order to verify the 

obtained authorization to use the service. 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 90 / 100 

5: The ASPSP validates the correctness and validity of the access token obtained (access_token) by 

means of an authorization service communication. 

6: The ASPSP receives the access token validation result 

7: In case of a positive result of the access token validation, the ASPSP returns the outcome of the XS2A 

service performance in the form of a response to the request sent by the TPP to the XS2A interface. 

8: The TPP presents a result of the XS2A interface service performance to the PSU 

Variant 2 – asynchronous services of the XS2A interface  

9: The TPP sends a request to the XS2A interface in order to use a service of this interface selected by 

the PSU (one of the methods listed in the table above). The request parameters include input data - 

required to perform the service, an access token (access_token) - required to verify the obtained 

authorization to perform the service, , and values of the callback_url and apiKey parameters - required 

to send a response to the request in the form of a request to the TPP-side callback interface. 

10: The ASPSP validates the correctness and validity of the access token obtained (access_token) by 

means of an authorization service communication. 

11: The ASPSP receives the access token validation result 

12: In case of a positive result of the access token validation, the ASPSP returns the outcome of the 

XS2A service performance by sending a request to the callback interface of the TPP-side XS2A interface 

(to the address indicated in callback_url).  

13: The TPP presents a result of the XS2A interface service performance to the PSU  

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 91 / 100 

11.6 XS2A Interface Method Calling without the Use of a Session 

The diagram presents a communication sequence allowing one to call the XS2A interface services for 

which a valid session of that interface is not required. The table below contains a list of methods within 

the framework of the AIS, PIS and CAF services, for which the sequence presented is obligatory. 

AIS 

/[VER_1]/accounts/[VER_2]/deleteConsent 

PIS 

/[VER_1]/payments/[VER_2]/getMultiplePayments 

CAF 

/[VER_1]/confirmation/[VER_2]/getConfirmationOfFunds 

 

 

Figure 28: XS2A interface method calling without the use of a session 

Description of interactions as per the sequence of their occurrence: 

1: The PSU initiates the use of the selected XS2A interface service at the TPP's application side. This 

service does not require any session at the XS2A interface’s side. The services of this type were listed 

in the table above. 

Variant 1 – synchronous services of the XS2A interface 

2: The TPP sends a request to the XS2A interface in order to use a service of this interface selected by 

the PSU. The request parameters contain input data required to perform the service. 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 92 / 100 

3: The ASPSP returns the outcome of the XS2A service performance in the form of a response to the 

request sent by the TPP to the XS2A interface. 

4: The TPP presents a result of the XS2A interface service performance to the PSU 

Variant 2 – asynchronous services of the XS2A interface 

5: The TPP sends a request to the XS2A interface in order to use a service of this interface selected by 

the PSU. The request parameters include input data - required to perform the service, and values of 

the callback_url and apiKey parameters - required to send a response to the request in the form of a 

request to the TPP-side callback interface. 

6: The ASPSP returns the outcome of the XS2A service performance by sending a request to the 

callback interface of the TPP-side XS2A interface (to the address indicated in callback_url). 

7: The TPP presents a result of the XS2A interface service performance to the PSU 

 

  

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 93 / 100 

12 Error codes 

STAGE ERROR HTTP CODE HOW SUPPORTED 
All Incorrect request. No required 

headers or syntax errors in the 
request body provided. 

400 TPP-side support. Change 
of the implementation of 
the XS2A interface client 
leading to the 
construction of requests 
compliant with the valid 
specification of that 
interface as published by 
the ASPSP. 

Incorrect verification of the 
TPP’s identity. Resulting from 
the lack of TPP’s certificate or 
no possibility to start a 
connection using the TLS 
protocol mutual authentication 
mechanism  

401 TPP-side support. 
Verification of correctness 
and completeness of the 
certificate used to start 
connection with the XS2A 
interface. 

Sending requests which, as to 
their business scope, are not 
compliant with the consents 
obtained. E.g. an attempt to 
initiate a payment using an 
access token obtained on the 
basis of the PSU’s consent to 
use the AIS service of the XS2A 
interface. 

403 TPP-side support. 
Validation of 
implementation 
correctness. Sending 
requests which, as to their 
business scope, are 
compliant with the 
consents obtained. 

Inadmissible http protocol 
method has been used. Only 
the POST method is admissible. 

405 TPP-side support. Change 
of implementation of the 
XS2A interface client 
leading to the 
construction of requests 
using the POST method. 

Incorrect accept header in the 
request (the server is not able 
to handle it correctly) 

406 TPP-side support. Change 
of the implementation of 
the XS2A interface client 
leading to sending of 
requests with the correct 
accept header value, that 
are compliant with the 
valid specification of that 
interface as published by 
the ASPSP. 

An incorrect Content-Type 
header has been set in the 
request 

415 TPP-side support. Change 
of the implementation of 
the XS2A interface client 
leading to sending of 
requests with a correct 
Content-Type header value 
that are compliant with 
the valid specification of 
that interface as published 
by the ASPSP. 

Errors in the validation of 422 TPP-side support. Change 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 94 / 100 

business data sent in the 
request body. 

of the implementation of 
the XS2A interface client 
leading to sending of 
requests containing 
correct business data, that 
are compliant with the 
valid specification of that 
interface as published by 
the ASPSP. 

Internal error of the XS2A 
interface server of undisclosed 
origin 

500 ASPSP-side support. 
Elimination of reasons 
underlying the error and 
restoration of the correct 
operation of the XS2A 
interface as soon as 
possible. 

XS2A interface doesn’t support 
given functionality requested 
by TPP 

501 TPP-side support. Given 
functionality requested by 
TPP is not supported by 
ASPSP, therefore TPP 
shouldn’t repeat the 
request.  

The XS2A interface is 
temporarily unavailable due to 
increased server loading or 
maintenance work is in 
progress. 

503 ASPSP-side support – 
notification sent to the 
TPP, as part of the 
response to the request, 
about the planned 
unavailability and 
restoration of the 
operation of the XS2A 
interface within the 
declared deadline. 
TPP-side support – re-
sending of the request 
after the expiry of the 
ASPSP-declared deadline 
for the resumption of the 
XS2A interface operation. 
Notification sent to the 
PSU about a temporary 
unavailability of services 
related to the use of the 
XS2A interface. 

Initiation of the 
authentication and 
authorization process (the 
/authorize and /authorizeExt 
methods) 

Incorrect verification of the 
licence of the TPP that applies 
for a consent the scope of 
which is not compliant with the 
licence held. 

403 TPP-side support. 
Verification of the licence 
obtained. Sending 
requests compliant with 
the licence held. 

The PSU’s authentication and 
authorization of access to the 
ASPSP's resources in the 
ASPSP’s domain (after the 
PSU’ browser redirection to 
the ASPSP’s domain in the 
ASPSP-side authorization 
method) 

A request to redirect the PSU’s 
browser to the ASPSP was 
erroneous, in particular since it 
was inconsistent with the 
address provided by the ASPSP 
in response to the /authorize 
request of the XS2A interface 

302 ASPSP-side support – 
redirection to the TPP’s 
domain with information 
provided in the Location 
header about the error 
reason. 
TPP-side support - 
Verification of 
implementation of the 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 95 / 100 

XS2A interface client in 
order to improve the 
method of PSU’s 
redirection to the ASPSP’s 
domain. 

The PSU failed to authorise 
access for the TPP to its 
resources or such an 
authorization was not admitted 
by the ASPSP 

302 ASPSP-side support – 
redirection to the TPP’s 
domain with information 
provided in the Location 
header about the error 
reason. 
TPP-side support – 
transfer of information to 
the PSU about the result 
of authorization obtained 
from the ASPSP. 

The PSU was not able to 
terminate the ASPSP-side 
authentication process or there 
is a mismatch between the 
psuIdentifierValue parameter 
and the identity of the PSU 
authenticated 

302 ASPSP-side support – 
redirection to the TPP’s 
domain with information 
provided in the Location 
header about the error 
reason. 
TPP-side support – 
transfer of information to 
the PSU about the result 
of authentication of that 
PSU. 

The ASPSP identified errors 
during the verification of the 
context of the PSU 
authenticated 

302 ASPSP-side support – 
redirection to the TPP’s 
domain with information 
provided in the Location 
header about the error 
reason. 
TPP-side support - 
Verification of 
implementation of the 
XS2A interface client in 
order to improve the PSU 
authentication process or 
to collect additional 
correct information about 
the context from the PSU 
and renewal of the 
process of its 
authentication and 
authorization to the 
ASPSP’s resources. 

Start of the XS2A interface 
session (/token method) 

The authorization code for 
grant_type= 
authorization_code is empty or 
syntactically incorrect. 

400 TPP-side support - 
Verification of 
implementation of the 
XS2A interface client in 
order to improve the 
mechanism of session 
starting using the 
grant_type= 
authorization_code 
method. 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 96 / 100 

The authorization code for 
grant_type= 
authorization_code is invalid. 

403 TPP-side support – 
reinitialisation of the 
process of the PSU’s 
authentication and 
authorization of access to 
the ASPSP’s resources in 
order to obtain a new 
authorization code. 

The value of refresh_token for 
grant_type=refresh_token is 
empty or syntactically incorrect. 

400 TPP-side support - 
Verification of 
implementation of the 
XS2A interface client in 
order to improve the 
mechanism of session 
starting using the 
grant_type= refresh_token 
method. 

The value of refresh_token for 
grant_type=refresh_token has 
not allowed an identification of 
a valid ASPSP-side session  of 
the XS2A interface. 

403 TPP-side support – 
reinitialisation of the 
process of the PSU’s 
authentication and 
authorization of access to 
the ASPSP’s resources in 
order to establish a new 
XS2A interface session. 

The value of exchange_token 
for grant_type=exchange_token 
is empty or syntactically 
incorrect. 

400 TPP-side support - 
Verification of 
implementation of the 
XS2A interface client in 
order to improve the 
mechanism of session 
starting using the 
grant_type= 
exchange_token method. 

The value of exchange_token 
for grant_type=exchange_token 
has not allowed an 
identification of a valid ASPSP-
side session  of the XS2A 
interface. 

403 TPP-side support – 
reinitialisation of the 
process of the PSU’s 
authentication and 
authorization of access to 
the ASPSP’s resources in 
order to establish a new 
XS2A interface session. 

Incorrect verification of the 
licence of the TPP that applies 
for a consent the scope of 
which is not compliant with the 
licence held. The situation 
concerns incorrect values of the 
scope or scope_details 
parameters in a situation when 
it is reasonable that they should 
be filled in (e.g.obtaining a 
consent for a request 
concerning the status of an 
initiated payment or exchange 
consents to make more 
detailed requests concerning 

403 TPP-side support - 
Verification of 
implementation of the 
XS2A interface client in 
order to improve the 
mechanism of session 
starting using a narrowed 
scope of consents. 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 97 / 100 

the AIS service) for the 
grant_type=exchange_token 
and grant_type=refresh_token 
methods. 

XS2A business service (AIS, 
PIS) calling 

The ASPSP receives a request in 
which the access token value is 
empty or there is no 
Authorization header (does not 
concern the /deleteConsent 
and /getMultiplePayments 
methods) 

401 TPP-side support - 
Verification of 
implementation of the 
XS2A interface client in 
order to improve the 
mechanisms of sending 
requests to the XS2A 
interface. 

The ASPSP receives a request 
with an access token that has 
expired 

401 TPP-side support - token 
refreshing using the 
/token and 
grant_type=refresh_token 
methods. 

The ASPSP receives a request 
for which the client's consent 
(the XS2A session interface) has 
expired 

403 TPP-side support -  start of 
the process of the PSU’s 
authentication and 
authorisation to the 
ASPSP’s resources in order 
to refresh the consent or 
obtain a new one using 
the /authorize or 
/authorizeExt method. 

The ASPSP receives a request 
without JWS-SIGNATURE 

400 TPP-side support - 
Verification of 
implementation of the 
XS2A interface client in 
order to improve the 
mechanisms of generating 
JWS-SIGNATURE and/or 
sending requests to the 
XS2A interface.  

The ASPSP receives a request 
with JWS-SIGNATURE which has 
not been validated correctly. 

422 TPP-side support - 
Verification of 
implementation of the 
XS2A interface client in 
order to improve the 
mechanism of JWS-
SIGNATURE generation. 
Verification of correctness 
and validity of the 
certificate (electronic 
stamp) used by the TPP to 
generate the signature. 

The  ASPSP receives a request 
that cannot be handled due to 
the fact that the current limit of 
requests has been exceeded 
(concerns the AIS service and 
requests sent without the PSU’s 
participation). 

429 TPP-side support -  re-
sending of the request 
after the request counter 
value has been reset 

In case of the 4xx and 5xx family errors, the business details describing the error causes may be 
described using the JSON structure called Error and sent back to the TPP in the response body. 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 98 / 100 

In case of errors at the ASPSP side after the PSU’s browser has been redirected to the ASPSP’s domain 
(in the ASPSP-side authentication method), the business details describing the error causes may be 
described in the Location header of the redirection (code 302) to the TPP domain in accordance with 
the rules described in item 7.2.3 of the PolishAPI specification. 

The business content of errors returned by the ASPSP and their additional identifiers will be descried 
individually by each ASPSP in the XS2A interface specification basing on the PolishAPI standard, 
maintaining the extraordinary cases and HTTP error codes described. 

  

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 99 / 100 

13 Standard Implementation Recommendations 

13.1 Timeout Support 

Due to the timeout type events which may occur during the http request processing, the ASPSP must 
ensure uniqueness verification at the server layer at the requestId level. Having identified a non-
uniqueness of the request, the ASPSP returns the 400.1 error (Request repeated). 

The recommended timeout value is 30 seconds. 

13.2 TPP verification 

The TPP authentication should be made based on the communications certificate (tls) and signature 
certificate (JSON Web Signature), with a simultaneous verification whether or not the certificates 
correspond to the TPP’s ID (tppId) in the ASPSP’s database. The tppId value is determined by the ASPSP 
during the TPP technical registration; the suggested value is TPP’s EUNIP . 

13.3 Authorization server  

It is recommended that in its configuration of the given client_id, the ASPSP should have a list of 
redirect_uri which may be used. Thus, the ASPSP will not redirect the client to an incorrect URL address 
which may be submitted by an untrusted party. 

13.4 Fraud Prevention 

In order to prevent potential frauds, a dedicated RequestHeader Class was implemented which is 
provided in each request and contains the following information about the PSU: IP address and 
userAgent. The structure will be useful for the ASPSP during the implementation of security 
mechanisms. 

Additionally, it is recommended that the entities participating in the project exchanged information 
about suspected unauthorised transactions/compromised IPs etc. 

  

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/


PolishAPI specification  Version 3.0 

This work, published by the Polish Bank Association, is available based on the Creative Commons Attribution 3.0 Poland 

licence. 100 / 100 

14 List of Annexes 

Annex No. 1: PolishAPI-ver3_0.yaml  

Annex No. 2: PolishAPI-CallBack-ver3_0.yaml  

 

https://creativecommons.org/licenses/by/3.0/pl/
https://creativecommons.org/licenses/by/3.0/pl/

